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Abstract

The motion of a probe around asteroids is highly perturbed by several disturbing forces. So, understanding the dy-
namics in asteroid-proximity environments is essential to designing stable orbits around these small objects. The present
work focuses on the effect of a third-body attraction on frozen orbits around asteroids. The full dynamic model includes
the asteroid's gravitational field up to the fourth zonal harmonics, and solar radiation pressure, besides a third-body
attraction. The work derives semi-analytical solutions of such orbits under the full model perturbations. We carried out
several numerical simulations to investigate the effect of the third body on the frozen orbits and the dynamics. We found
that the third-body attraction shifts the location of the frozen orbits and affects the dynamics. In addition, we found that
the area-to-mass ratio A=m of the probe influences the location of the frozen orbits. Furthermore, we found that the initial
eccentricities and inclinations affect the orbits.
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1. Introduction

T he subject of frozen orbits has attracted a lot of
interest in the field of astrodynamics because of

its special stability properties and possible applica-
tions in space missions. An orbit that is frozen keeps
some orbital elements almost constant over time.
Frozenorbitsaboutasteroids area typeof stableorbital
motion around irregularly shaped and non-uniformly
rotating asteroids. These orbits have minimal varia-
tions in their orbital elements, allowing them topersist
for long durations without major changes [1,2].
The dynamics of orbits around asteroids differ

significantly from those of orbits around more
massive bodies that rotate consistently. Because of
their complicated rotation and irregular shape, as-
teroids produce a time-periodic gravitational po-
tential. This means that there is no Jacobi constant
and zero-velocity surfaces cannot be used to study
the behavior of the system [1]. Utashima identified
two types of frozen orbits: one in the asteroid's
orbital plane and the other in the solar plane-of-sky,

suitable for smaller asteroids. The study finds that
polar orbits have several advantages, including
small maintenance fuel requirements. One particu-
larly strong set of frozen orbits is a retrograde family
that can reach semi-major axes approximately half
the length of the asteroid [2].
Space missions to small objects like comets and

asteroids must deal with different perturbations
acting on artificial satellites. Using a general per-
turbative theory of motion, the beginning conditions
for these frozen orbits are found by averaging across
the argument of node and mean anomaly, which
minimizes system complexity while accounting for
the gravitational potential up to arbitrary order. This
approach can be applied to various celestial bodies,
including asteroids like Eros 433 [3].
Because of the characteristics of the frozen orbit, the

sectorial harmonic terms were excluded from the
frozen orbit design, as they were removed using the
averaging technique [4]. Since solar radiation pres-
sure (SRP) can destabilize the orbit at higher radii, it
becomes the primary perturbation for spacecraft
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orbiting asteroids, and analytical theories have been
developed to characterize its effects and define orbital
limitations to ensure stable trajectories. The irregu-
larity of the gravity field of asteroids can have conse-
quences on the orbital stability of satellites, and the
influence of SRP and third-body perturbing forces on
the stability of orbits around irregularly shaped ob-
jects can be determined using several techniques to
predict and manage the influences of SRP and third-
body forces [5,6].
Jiang et al. [7] examined periodic motions around

asteroids 216 Kleopatra and 101955 Bennu, revealing
both stable and unstable orbits with complex ge-
ometries. Jiang and Baoyin [8] studied periodic orbit
families around irregular bodies, identifying multi-
ple bifurcations and proving a conserved quantity
that limits the number of periodic orbits at fixed
energy levels. Jiang et al. [9] examined orbits and
manifolds close to rotating asteroids' equilibrium
points, categorizing them into eight scenarios and
outlining the submanifold and subspace structures.
These investigations shed light on the intricate dy-
namics of these systems and show the existence of
stable orbits close to asteroid surfaces, some as close
as half the asteroid's longest dimension.
Over the lastdecades, researchershave continued to

explore more about asteroids, as they give more ideas
about our solar system. Moreover, understanding the
movement of asteroids gives the perspective of plan-
etary defense to avoid a catastrophic event onEarth by
reducing the threat of dangerous asteroids. For
example, asteroid Ryugu was visited by Japan's Hay-
abusa2 spacecraft in 2018 [6,10].
In this paper, we extend the work by Kikuchi et al.

[6] and consider the effect of the third-body attrac-
tion on the frozen orbits around the Ryugu asteroid.
The full dynamical model comprises the asteroid
gravity field, the solar radiation pressure, in addi-
tion to the third-body attraction.

2. Dynamical model

In this section, we describe the orbital motion of a
spacecraft around the asteroid Ryugu. The asteroid
is considered as the main central body. The orbital
motion of the spacecraft is referenced to an asteroid-
centered frame. The spaceship moves around the
asteroid under perturbations due to the asteroid's
gravity field, solar radiation pressure, and solar
gravity (third body). Table 1 lists the asteroid pa-
rameters used in this paper.

2.1. Asteroid's gravity field

Assuming that the asteroid is not spherical, then
the irregular gravity field of an asteroid can be

expressed in terms of the orbital elements ða; e; i;M;
u;UÞ of the probe as [11].

RAsða; e; i;M;u;U;qÞ¼mAs
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where a denotes the semi-major axis, e the eccen-
tricity, i the inclination, M the mean anomaly, u the
argument of perigee, U the longitude of the
ascending node, mAs ¼ G mAs with G the gravita-
tional constant and mAs the mass of the asteroid, RAs
is the asteroid's radius, and the FnmpðiÞ and GnmpðeÞ
are the inclination and eccentricity functions [12].
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where k ¼ ½ðn � mÞ =2�, and b being functions of the
eccentricity.
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Table 1. The properties and physics of asteroid Ryugu [10].

Semi-major axis a ¼ 1:190 AU

Inclination i ¼ 5:884 Degree
Longitude of ascending node U ¼ 251:6 Degree
Argument of perihelion u ¼ 211:4 degree
Mean anomaly M ¼ 21:94 degree
Eccentricity e ¼ 0:1903

Gravitational parameter G m ¼ 30:0 ±0:04 m3=s2

Mass m ¼ ð4:50 ±0:06Þ1011 kg
Volume V ¼ 0:377 ±0:005 km3

Mean radius RM ¼ 448:31 m
Maximum radius Rmax ¼ 528:52 m
Minimum radius Rmin ¼ 377:26 m
Mean density r ¼ 1190 ± 20 kg=m3

Mean motion N ¼ 1:991� 10�7 s�1
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Now we consider only the long-period dynamics by
averaging equation (1) over the fast angles M and q,
(setting n� 2pþ q ¼ 0, and m ¼ 0), then the explicit
expansions of RAs up to order n ¼ 4 can be written as

Where the zonal harmonic coefficients of the gravity
field of the asteroid are given as [6]. J2 ¼ 3:8727�
10�2, J3 ¼ �1:7568� 10�3 and J4 ¼ � 2:2571� 10�2.

2.2. Solar gravity

Another possible disturbing force is solar gravity,
which provides the solar tidal force on a spaceship
around the Ryugu asteroid. The perturbation due to
the Sun's attraction can be written as an expansion
in the orbital elements of the Sun and spaceship,
using the following formula [11,13].
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where MS is the mass of the disturbing body, ðas; es;
is;us;UsÞ are the orbital elements of the Sun. The
functions Flm pðiÞ and FlmhðisÞ are the Kaula's incli-
nation functions. The functions HlpqðeÞ and GlhjðesÞ
represent the Hansen coefficients Xl;l�2p
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braic manipulator through the following formula
[14,15].
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Expanding equation (5) up to l ¼ 2, then

Finally, we have the following expression:

2.3. Solar radiation pressure

The motion of a spaceship in the vicinity of an
asteroid is strongly perturbed by solar radiation
pressure. Particularly when the asteroid has weak
self-gravity and in the case of a spaceship with a
large area-to-mass ratio. The potential function of
the SRP can be written as [11].

Where A=M (b) is the area-to-mass ratio of the
spacecraft, Cr is the reflectivity coefficient, Pr and is
the SRP for Earth.
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The expression for the corresponding disturbing
potential is given by

3. The equations of motion

To analyze the influence of the perturbing func-
tions on the orbital elements of the probe, we
introduced the normalized potential into Lagrange
planetary equations. This system of equations de-
scribes the time variation of the orbital elements.
The temporal evolutions of the eccentricity and
argument of perigee are given by their corre-
sponding Lagrange planetary equations. These
equations can be written as [16].
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Where n ¼
ffiffiffiffiffiffiffiffiffiffi
m=a3

p
is the mean motion of the

spacecraft. The Lagrange planetary equations are
modified by subtracting the spin rate N from the
node, ðU ¼ ~U � NÞ, defining the node relative to the
sun line. The averaged perturbing function U is
given by the following:

U¼RAs þRsun þRsrp ð12Þ

4. Frozen orbits results

Artificial satellites around the Earth experience
important variations in their orbital elements due to
perturbing forces. Consequently, the control pro-
cess for long-range missions requires continuous
maintenance. However, carefully selecting the
orbital elements can reduce the number of correc-
tive maneuvers. By designing the mission such that
the mean eccentricity and argument of pericenter
remain constant on average, we ensure a longer
lifetime for the spacecraft. In the case of a spacecraft
orbiting a small body (asteroid), the situation is
more complicated. This is because the magnitudes
of the disturbing forces can be different from the
planetary orbiter case. In the present case, we
consider that the small body gravity field will
dominate over the included perturbing forces.
To compute the frozen orbits, we first eliminate

the short-period terms from the disturbing function
of the problem. Afterward, the normalized disturb-
ing function is introduced into the Lagrange plan-
etary equations to obtain the secular variations of e
and u: Setting these equations (equation (11)) to
zero, frozen orbits around asteroid Ryugu are
identified as the equilibria of these equations. The
definition of frozen orbits can be written in the form

da=dt ¼ 0;di=dt ¼ 0;de=dt ¼ 0;du=dt ¼ 0;dU=dt ¼ 0:

ð13Þ
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Frozen orbits are obtained when Equation (14)
vanish i.e.

du
dt

¼0: ð15Þ
Solving equation (15), we obtain an equation

that depends on the set of variables ða; i; eÞ. This
equation can be represented as a three dimensional
surface. Points on this surface are the equilibrium
points of the dynamic system, i.e. frozen orbits. In
the literature, researchers used several criteria to
illustrate and characterize these orbits. Among them
is the eccentricityevector diagram which is used to
visualize a set of frozen solutions. To nullify the
argument of pericenter variation, Figs. 1e4 depict
the location and behavior of frozen orbits in the ði;eÞ,
and ða; i Þ spaces. We used initial conditions in the
range, a2½1; 5� km; e2½0; 0:9�; and i2½0�; 180��: The
results are analyzed using different combinations of
disturbing functions. Figure 1a illustrates the frozen
orbits under perturbations due to the asteroid's
gravity field, the solar radiation pressure, and the
third body. Figure 1b illustrates the frozen orbits
where the effect of the third body is ignored. We
notice the shift in the locations of frozen orbits be-
tween the two plots. This is due to the presence of
the third-body effect. We also observe the

significance of the semi-major axis on the locations
of frozen orbits in both cases. Furthermore, we
notice that some of the frozen orbits present in the
case of the full model disappear from Fig. 1b.
Figure 2 depicts the behavior of the frozen orbits

in the ði; eÞ space with fixed semi-major axis, a ¼
5 km, and different values of b. We used two
models, the blue color represents the model that
comprises the asteroid's gravity field plus the solar
radiation pressure, whereas the red color represents
all perturbations (full model). Figure 2a describes
the orbits when b ¼ 0:024, while in Fig. 2b b ¼ 0:24:
We observe in both models that the parameter b

shifts the location of the frozen orbits.
Figure 3 shows the plan of the frozen orbit in the

ða; iÞ space with fixed b ¼ 0:024; and different ec-
centricity values. In Fig. 3a all the disturbing func-
tions are considered, while in Fig. 3b the effect of the
third body is ignored. We observe that, in both
models, changing the eccentricity leads to a shift in
the location of the frozen orbits.
Figure 4 depicts the contour maps ða; iÞ, with

e ¼ 0:9 and different b values. Figure 4a describes
the orbits when b ¼ 0:024, while in Fig. 4b b ¼ 0:24:
The blue color represents the model comprising the
asteroid's gravity field besides the solar radiation
pressure, while the red represents all perturbations.
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Figure 5 shows the long-term propagation of the
eccentricity and inclination of the spacecraft using
an averaged force model. The figure depicts the
propagation under perturbation due to the complete
force mode (red color), and model without a third
body (black color). The initial conditions are e ¼
0:75, i ¼ 90�, u ¼ 90�, U ¼ 90�, M ¼ 0�, b ¼ 0:024,
and a ¼ 2000 m. The figure shows the shift in the
curves due to the third-body perturbation. It is also
observed that, in both models, the eccentricity and
inclination oscillate with small amplitudes.
Figure 6 illustrates the time variation of the same

orbital elements for different semi-major axes. The
propagations are performed under full perturba-
tions with initial conditions e ¼ 0:75, i ¼ 90�, u ¼

90�, U ¼ 90�, M ¼ 0�, and b ¼ 0:0237. The figure
shows the significance of changing the semi-major
axis.
Figure 7 represents the time variation of the

orbital elements for different b. The propagations
are carried out under full perturbations with initial
conditions e ¼ 0:75, i ¼ 90�, u ¼ 90�, U ¼ 90�, M ¼
0�, and a ¼ 2000 m: The figure shows that the effect
of small b can be neglected, while for large values its
effect is significant, particularly in the inclination.
Figure 8 illustrates the time variation of the orbital

elements for different initial eccentricities. The force
model includes the full perturbations. The initial
conditions used are i ¼ 90�, u ¼ 90�, U ¼ 90�, M ¼
0�, b ¼ 0:0237, and a ¼ 2000 m.

Fig. 1. The locations of frozen orbits in the ði; eÞ space for the two force models with different semi-major axes.

Fig. 2. The locations of the frozen orbits in the ði; eÞ space for different b.
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Fig. 3. The plan of the frozen orbit in the ða; iÞ space for different eccentricity values.

Fig. 4. The locations of the frozen orbits in the ða; iÞ space for different b.

Fig. 5. The time variation of the inclination and eccentricity with two force models.

110 A.A. Abozaid et al. / Al-Azhar Bulletin of Science 35 (2024) 103e112



Fig. 6. The time variation of the inclination and eccentricity with different semi-major axis.

Fig. 7. The time variation of the inclination and eccentricity with different b.

Fig. 8. The time variation of the inclination and eccentricity with different eccentricities.
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Figure 9 illustrates the time variation of the orbital
elements for different initial inclinations. The force
model contains the full perturbations. The initial
conditions used are e ¼ 0:75, u ¼ 90�, U ¼ 90�,
M ¼ 0�, b ¼ 0:0237, and a ¼ 2000 m. It is observed
from Figs. 8 and 9 that the variations in both e; and i
are close to their initial values.

5. Conclusion

Missions to asteroids encounter several dynamic
challenges, such as the low-gravity environment of
asteroids and strong perturbations due to SRP and a
third-body attraction. To overcome this problem,
frozen orbits around asteroids are a suitable solution.
In the present work, frozen orbits around the

Ryugu asteroid are obtained under the effect of its
gravitational field up to fourth order. In addition, the
SRP and third-body attraction perturbations are
considered. The third body shifts slightly the location
of the frozen orbits. The dynamical behavior of the
probe around Ryugu under the full model differs
from that without a third-body attraction. Changing
quantities like semi-major axis, inclination, etc. lead
to a change in the location of the frozen orbits.
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