Al-Azhar Bulletin of Science

Manuscript 1688

Section: Mathematics and Statistics

j-filters and j-congruences of locally bounded K _2-algebras

Ragaa El-Fawal

Abd El-Mohsen Badawy

Abd El-Rahman Hassanein

Follow this and additional works at: https://absb.researchcommons.org/journal

ORIGINAL ARTICLE

j-filters and j-congruences of Locally Bounded K_2 -algebras

Ragaa Abd El-Mawgoud El-Fawal ^{a,*}, Abd El-Mohsen Mohammad Badawy ^b, Abd El-Rahman Mohammad Hassanein ^c

Abstract

In this paper, we introduce and characterize the notions of j-filters and principal j-filters of a locally bounded \underline{K}_2 -algebra L with $L^{\vee} = [j]$. Many properties of j-filters of a locally bounded \underline{K}_2 algebra L are investigated, and a set of equivalent conditions for a filter F to be a j-filter is given. Also, we show that the class $F_j(L)$ of all j-filters of L forms a bounded modular lattice. We obtain many interesting properties of the principal j-filters of a locally bounded \underline{K}_2 -algebra L. Moreover, a characterization of a j-filter of a locally bounded \underline{K}_2 -algebra L is given in terms of principal j-filters of L. We establish and characterize the lattice $Con_j(L)$ of all j-lattice congruences of a locally bounded \underline{K}_2 -algebra L via j-filters and the lattice $Con_j^p(L)$ of all principal j-lattice congruences via principal j-filters of L. Finally, we prove that the principal j-lattice congruence $\theta_{(x)^{\Delta}}, x \in L$ is a $\{\circ\}$ -congruence on L if and only if x is a Boolean element of L such that $x \leq j^{\circ\circ}$.

 $Keywords: \underline{K}_2$ -algebras, K_2 -algebras, Congruences, Filters, Lattice congruences, Modular GMS-algebras, GMS-algebras, MS-algebras

1. Introduction

he class MS of all MS-algebras, which is a generalization of the class M of all de Morgan algebras and the class S of all Stone algebras, was introduced by Blyth and Varlet [1]. The subvarieties of the class MS were characterized by Blyth and Varlet in Ref. [2]. Additionally, Blyth and Varlet [3,4] constructed MS-algebras from the subclass K2 by using quadruples. More basic properties of MS-algebras are considered in Refs. [5–7]. The class GMS of all generalized MS-algebras was investigated by Sevčovič [8]. Later, Badawy [9] introduced and constructed the principal generalized K_2 -algebras (briefly principal GK₂-algebras) from generalized Kleene algebras and bounded lattices using triples. Also, Badawy [10] constructed \underline{K}_2 -algebras from Kleene algebras and modular lattices by means of \underline{K}_2 -quadruples. He characterized the isomorphism of \underline{K}_2 -algebras in terms of \underline{K}_2 -quadruples.

In [11], the author studied the d_L -filters of a principal MS-algebras, that properly each d_L -filter of L contains the dense filter $D(L) = d_L$, but in a locally bounded \underline{K}_2 -algebra L with $L^{\vee} = [j]$ each j-filter contains L^{\vee} , where $D(L) \subseteq L^{\vee}$, so every j-filter is a d_L -filter but the converse is not true.

Many properties of filters are studied in p-algebras and MS-algebras are given in Refs. [12–14].

El Fawal *et al.* [15] introduced and characterized \underline{K}_2 -congruence pairs of modular generalized *MS*-algebras from the class \underline{K}_2 of all \underline{K}_2 -algebras.

In this paper, we introduce the concept of j-filters of a locally bounded \underline{K}_2 -algebra L with $L^\vee=[j]$. We show that the set $F_j(L)$ of all j-filters of a locally bounded \underline{K}_2 -algebra L forms a bounded modular lattice. We introduce the notion of principal j-filters of L and investigate the basic properties of such filters . Also, we prove that $F_j^p(L)$ of all principal j-filters of L forms a Kleene algebra and it is a bounded sublattice of $F_j(L)$. Moreover, we study the relationship between the relation ψ , where

Received 22 May 2024; revised 17 August 2024; accepted 20 September 2024. Available online 4 November 2024

^a Department of Mathematics, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt

^b Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

^c Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt

^{*} Corresponding author at: Department of Mathematics, Faculty of Science (Girls), Al-Azhar University, Nasr City 11884, Cairo, Egypt. E-mail address: Ragaaelfawal2890.el@azhar.edu.eg (R. Abd El-Mawgoud El-Fawal).

$$(x, y) \in \psi \Leftrightarrow x^{\circ} = y^{\circ},$$

and the principal j-filters of L. Further, we characterize the lattice $Con_j(L)$ of all j-lattice congruences of a locally bounded \underline{K}_2 -algebra L via j-filters and the lattice $Con_j^p(L)$ of all principal j-lattice congruence via principal j-filters of L. Finally, we prove that the principal j-lattice congruence $\theta_{(x)^\Delta}$ is a congruence (that preserving \vee, \wedge, \circ) on L if and only if x is a Boolean element of L such that $x \leq j^{\circ \circ}$.

2. Preliminaries

This section contains several definitions and important results that are essential to this work and are mostly considered in Refs. [10–12].

Definition 1. [16] A filter F is a nonempty subset of L, that satisfies the conditions:

- (1) $x, y \in F$ implies $x \land y \in F$,
- (2) If $x \ge y, y \in F$ and $x \in L$, then $x \in F$

A filter [A] generated by a subset A of a lattice L is defined as follows:

$$[A) = \{x \in L : x \ge a_1 \land a_2 \land ... \land a_n, \text{ for some } a_i \in A, i = 1, 2, ..., n\}$$

If $A = \{a\}$, we write [a] instead of $[\{a\}]$ and $[a] = \{x \in L : x \ge a\}$ is called a principal filter generated by a.

The lattice $(F(L); \land, \lor)$ of all filters of a lattice L is a distributive (modular) if and only if the lattice L is distributive (modular), where

$$F_1 \wedge F_2 = F_1 \cap F_2$$
 and $F_1 \vee F_2 = \{x \in L : x \ge f_1 \wedge f_2, \text{ for some } f_1 \in F_1, f_2 \in F_2 \}.$

Now, we recall the definitions of MS-algebras, K_2 -algebras, de Morgan algebras, and stone algebras from Ref. [17].

An MS-algebra $(L; \lor, \land, °, 0, 1)$ is an algebra with type (2, 2, 1, 0, 0), where $(L; \lor, \land, 0, 1)$ is a distributive lattice and the unary operation ° satisfies the following:

$$x \le x^{\circ \circ}, (x \land y)^{\circ} = x^{\circ} \lor y^{\circ}, 1^{\circ} = 0.$$

An MS-algebra together with the identity $x = x^{\circ \circ}$ is a de Morgan algebra.

A Kleene algebra is a de Morgan algebra which satisfies this identity

$$(x \wedge x^{\circ}) \vee (y \vee y^{\circ}) = y \vee y^{\circ}.$$

An MS-algebra that satisfies the following two identities is a K_2 -algebra:

$$x \wedge x^{\circ} = x^{\circ} \wedge x^{\circ \circ}, (x \wedge x^{\circ}) \vee (y \vee y^{\circ}) = y \vee y^{\circ}.$$

An MS-algebra is called a Stone algebra if it satisfies the identity $x \wedge x^{\circ} = 0$ and is called a Boolean algebra if it satisfies this identity $x \vee x^{\circ} = 1$.

A generalized de Morgan algebra $(L; \vee, \wedge, \bar{}, 0, 1)$ (or *GM*-algebra) is a bounded lattice $(L; \vee, \wedge, 0, 1)$ with the unary operation $\bar{}$ satisfies the identities:

$$x = \overline{\overline{x}}, \overline{(x \wedge y)} = \overline{x} \vee \overline{y} \text{ and } \overline{1} = 0.$$

A generalized *MS*-algebra (simply *GMS*-algebra) is an algebra $(L; \lor, \land, °, 0, 1)$, where $(L; \lor, \land, 0, 1)$ is a bounded lattice and the unary operation satisfies the identities:

$$x \le x^{\circ \circ}, (x \land y)^{\circ} = x^{\circ} \lor y^{\circ} \text{ and } 1^{\circ} = 0.$$

We observe that a modular *GMS*-algebra L is a *GMS*-algebra, that is $(L; \lor, \land, 0, 1)$ is a modular lattice. The class *GMS* contains the classes *GM* and \underline{S} of all modular *S*-algebras. Moreover, the class *MS* is a proper subclass of the class *GMS* of all *GMS*-algebras.

Theorem 2. [8] For any two elements a, b of a GMS-algebra L, we have

- (1) $0^{\circ} = 1$,
- (2) $a \le b \Rightarrow b^{\circ} \le a^{\circ}$,
- (3) $a^{\circ \circ \circ} = a^{\circ}$,
- $(4) (a \lor b)^{\circ} = a^{\circ} \land b^{\circ},$
- $(5) (a \wedge b)^{\circ \circ} = a^{\circ \circ} \wedge b^{\circ \circ},$
- $(6) (a \lor b)^{\circ \circ} = a^{\circ \circ} \lor b^{\circ \circ}.$

An element a of a GMS-algebra L is called a closed element of L if $a=a^{\circ}$. The set $L^{\circ\circ}$ of all closed elements of L is defined by $L^{\circ\circ}=\{a\in L: a=a^{\circ\circ}\}$. It is known that $(L^{\circ\circ};\vee,\wedge,^{\circ},0,1)$ is a GM-algebra. The element $d\in L$ is called a dense element of L if $d^{\circ}=0$.

The class of all \underline{K}_2 -algebras was presented by Badawy [10], as a common abstract of Kleene algebras and modular *S*-algebras (modular *p*-algebras that satisfy the stone identity $x^{\circ} \vee x^{\circ} = 1$) as follows:

Definition 3. [10] A \underline{K}_2 -algebra L is a modular GMS-algebra such that $L^{\circ\circ}$ is a distributive lattice and L satisfies the following:

$$x \wedge x^{\circ} = x^{\circ} \wedge x^{\circ \circ}, x \wedge x^{\circ} \leq y \vee y^{\circ}.$$

We will denote by \underline{K}_2 for the class of all \underline{K}_2 -algebras. It is clear that \underline{K}_2 contains the classes K_2 , S, M, K, B and \underline{S} .

Theorem 4. [10] Let L be a \underline{K}_2 -algebra. Then we have

- (1) $x = x^{\circ} \land (x \lor x^{\circ})$, for all $x \in L$,
- (2) $L^{\circ \circ} = \{x \in L : x = x^{\circ \circ}\}$ is a Kleene algebra,
- (3) $L^{\vee} = \{x \in L : x \vee x^{\circ}\} = \{x \in L : x > x^{\circ}\} \text{ is a filter of } L,$

- (4) $L^{\wedge} = \{x \in L : x \wedge x^{\circ}\} = \{x \in L : x \leq x^{\circ}\}$ is an ideal of L,
- (5) $D(L) = \{x \in L : x^{\circ} = 0\}$ is a filter of L and $D(L) \subseteq L^{\vee}$.

Remark 5. In a \underline{K}_2 -algebra L, the condition $x \wedge x^\circ \leq y \vee y^\circ$, where $x \wedge x^\circ \in L^\wedge$ and $y \vee y^\circ \in L^\vee$ means that $a \leq z$ for every $a \in L^\wedge$ and $z \in L^\vee$.

Definition 6. [18] On a lattice L, the lattice congruence θ is an equivalence relation with the following condition:

if $(a, b) \in \theta$, $(c, d) \in \theta$ imply $(a \lor c, b \lor d) \in \theta$, $(a \land c, b \land d) \in \theta$.

Theorem 7. [16] The smallest lattice congruence $\theta_{(x,y)}$ on a lattice L that identifies x and y is called a principal lattice congruence on L and is defined by

 $(a,b) \in \theta_{(x,y)} \Leftrightarrow a \land x \land y = b \land x \land y \text{ and } a \lor x \lor y = b \lor x \lor y.$ It is clear that,

 $(a,b) \in \theta_{(x,1)} \Leftrightarrow a \wedge x = b \wedge x.$

Definition 8. [18] *For any lattice congruence* θ *on a bounded lattice* L, the Cokernel of θ (briefly $Coker\theta$) is the set $\{x \in L : (x, 1) \in \theta\}$, which forms a filter of L.

Lemma 9. [15] Let L be a \underline{K}_2 -algebra with $L^{\vee} = [j]$. Then we have

- (1) $x = x^{\circ} \land (x \lor j)$, for all $x \in L$,
- (2) $(a \wedge b) \vee j = (a \vee j) \wedge (b \vee j)$, for all $a, b \in L^{\circ \circ}$,
- (3) $(x \land y) \lor d = (x \lor j) \land (y \lor j)$, for all $x, y \in L$.

A lattice congruence θ is called a congruence on a \underline{K}_2 -algebra L if $(a,b) \in \theta$ implies $(a^\circ,b^\circ) \in \theta$. For any \underline{K}_2 -algebra L, we denote by Con(L) the lattice of all congruences of L and by $Con_{lat}(L)$ the lattice of all lattice congruences of L. Additionally, we use Δ_L and ∇_L , respectively , to indicate the identity congruence $\{(a,a):a\in L\}$ and the universal congruence $L\times L$ on L.

Throughout the paper, we consider $L^{\vee} = [j]$ to be the principal filter of a locally bounded \underline{K}_2 -algebra L that is generated by j.

For more information for filters, congruences on lattices and *MS*-algebras, see the references [19–23].

3. Characterization of *j*-filters of locally bounded K_2 -algebras

In this section, the notion of *j*-filters of a locally bounded \underline{K}_2 -algebra L is presented. Many properties of *j*-filters will be investigated.

At first, we introduce the definition of locally bounded \underline{K}_2 -algebras.

Definition 10. A \underline{K}_2 -algebra L is called a locally bounded if L^{\vee} is a principal filter of L, that is, there exists $j \in L$ such that $L^{\vee} = [j]$.

Definition 11. A filter F of a locally bounded \underline{K}_2 -algebra L with $L^{\vee} = [j]$ is called a j-filter of L if $j \in F$.

Example 12. Consider the algebra $(L; \vee, \wedge, ^{\circ}, 0, 1)$ in Fig. 1.

We observe that L is a locally bounded \underline{K}_2 -algebra with

$$L^{\vee} = [j] = \{1, b, x, y, z, d, j\}.$$

It is clear that L and L^{\vee} are the largest and smallest j-filters of L, respectively. Since j does not belong to each of the filters [d), [x), [y), [z), [b) and [1), then these filters are not j-filters of L.

Definition 13. Let A be a nonempty subset of a locally bounded

 \underline{K}_2 -algebra L with $L^{\vee} = [j]$. Define A^{Δ} as follows:

$$A^{\Delta} = \{ y \in L : y^{\circ \circ} \geq a^{\circ \circ} \land j, \text{ for some } a \in A \}.$$

Lemma 14. Let L be a locally bounded \underline{K}_2 -algebra. Let A be a nonempty subset of L which is closed with respect to \wedge . Then A^{Δ} is a j-filter of L containing A.

Fig. 1. L is a locally bounded \underline{K}_2 – algebra with $L^{\vee} = [j]$.

Proof. Clearly, $1 \in A^{\Delta}$. Let $x, y \in A^{\Delta}$. Then $x^{\circ \circ} \geq a_1^{\circ \circ} \wedge j$, and $y^{\circ \circ} \geq a_2^{\circ \circ} \wedge j$, for some $a_1, a_2 \in A$. Hence

$$(x \wedge y)^{\circ \circ} = x^{\circ \circ} \wedge y^{\circ \circ} \ge (a_1^{\circ \circ} \wedge j) \wedge (a_2^{\circ \circ} \wedge j) = (a_1^{\circ \circ} \wedge a_2^{\circ \circ})$$
$$\wedge j = (a_1 \wedge a_2)^{\circ \circ} \wedge j.$$

Since $a_1 \land a_2 \in A$, then $x \land y \in A^{\Delta}$. Now, let $y \in A^{\Delta}$ and let $z \ge y, z \in L$. Then $y^{\circ \circ} \ge a^{\circ \circ} \land j$, for some $a \in$ *A*. Thus $z^{\circ \circ} \geq y^{\circ \circ} \geq a^{\circ \circ} \wedge j$, for some $a \in A$. Therefore $z \in A^{\Delta}$ and hence A^{Δ} is a filter of L. Since $j^{\circ \circ} \geq j \geq$ $a^{\circ \circ} \wedge j$, for all $a \in A$, then $j \in A^{\Delta}$. Therefore A^{Δ} is a *j*-filter. Let $x \in A$. Since $x^{\circ \circ} \ge x^{\circ \circ} \land j$, then $x \in A^{\Delta}$. Thus $A \subseteq A^{\Delta}$. Then A^{Δ} is a *j*-filter of L containing A. This lemma gives the fundamental properties of A^{Δ} .

Lemma 15. Let A and B be two nonempty subsets of a locally bounded \underline{K}_2 -algebra L, which are closed under \wedge . Then we have

- (1) $[A) \subset A^{\Delta}$ and $L^{\vee} \subset A^{\Delta}$.
- (2) $A^{\Delta} = [A) \vee L^{\vee}$.
- (3) $A \subseteq B \Rightarrow A^{\Delta} \subseteq B^{\Delta}$,
- (4) $A^{\Delta\Delta} = A^{\Delta}$,
- (5) $[A]\Delta = A^{\Delta}$.

Proof. (1) Let $x \in [A)$. Then

 $x \ge a_1 \land a_2 \land ... \land a_n$ for some $a_i \in A, i = 1, 2, ..., n$.

 $x^{\circ \circ} \geq a_1^{\circ \circ} \wedge a_2^{\circ \circ} \wedge \ldots \wedge a_n^{\circ \circ} \geq (a_1 \wedge a_2 \wedge \ldots \wedge a_n)^{\circ \circ} \wedge j.$ Then $x \in A^{\Delta}$ as $a_1 \wedge a_2 \wedge ... \wedge a_n \in A$. Hence $[A] \subseteq A^{\Delta}$. Now, let $x \in L^{\vee} = [j)$.

Then $x \ge j$. This implies that $x^{\circ \circ} \ge x \ge j \ge a^{\circ \circ} \land j$ for some $a \in A$.

Therefore $x \in A^{\Delta}$ and hence $L^{\vee} \subseteq A^{\Delta}$.

(2) Let $y \in A^{\Delta}$. Then $y^{\circ \circ} \geq a^{\circ \circ} \wedge j$ for some $a \in A$. Since $y = y^{\circ} \land (y \lor j)$, then

$$y \ge (a^{\circ \circ} \land j) \land (y \lor j)$$

$$=a^{\circ\circ}\wedge(j\wedge(y\vee j))$$

 $= a^{\circ} \wedge j$, by the absorption identity

 $\geq a \wedge j$.

This gives that $y \in [a) \lor [j] \subseteq [A) \lor L^{\lor}$. Hence $A^{\Delta} \subseteq [A] \vee L^{\vee}$. Conversely, from (1), $[A] \vee L^{\vee} \subseteq A^{\Delta}$. Therefore $A^{\Delta} = [A) \vee L^{\vee}$.

(3) Let $y \in A^{\Delta}$ and $A \subseteq B$. Then $y^{\circ \circ} \ge a^{\circ \circ} \land j$, for some $a \in A \subseteq B$. Thus $a \in B$ and hence $y \in B^{\Delta}$. Then $A^{\Delta} \subseteq B^{\Delta}$.

(4)
$$A^{\Delta} = \{ y \in L : y^{\circ \circ} \geq a^{\circ \circ} \land j, \text{ for some } a \in A \}$$

$$= \{ y \in L : y^{\circ \circ} \ge a^{\circ \circ} \land j, \text{ for some } a \in A \subseteq A^{\Delta} \}, \text{ by}$$
Lemma 14

 $=A^{\Delta\Delta}$.

(5) From (2), (3) and (4), we get $[A]\Delta \subset A^{\Delta\Delta} = A^{\Delta}$. Conversely, since $A \subseteq [A)$, then again by (3), we get $A^{\Delta} \subseteq [A] \Delta$. Therefore $[A] \Delta = A^{\Delta}$.

Now, the following Theorem presents a characterization of a *j*-filter of a locally bounded K_2 -algebra L.

Theorem 16. Let L be a locally bounded \underline{K}_2 -algebra and *F* be a filter of *L*.

Then F is a j-filter of L if and only if $F = F^{\Delta}$.

Proof. Clearly, $j \in F$, as F is a j-filter of L. Then By Lemma 13, we have $F \subseteq F^{\Delta}$. Now, let $x \in F^{\Delta}$. Then $x^{\circ \circ} \geq f^{\circ \circ} \wedge j$, for some $f \in F$. Since

$$x = x^{\circ} \land (x \lor j) \ge (f^{\circ} \land j) \land (x \lor j) = f^{\circ} \land j \in F,$$

where $f^{\circ \circ}, j \in F$. Then $F^{\Delta} \subseteq F$ and hence $F = F^{\Delta}$. Conversely, let $F = F^{\Delta}$. Since $j \in F^{\Delta} = F$, then F is a *i*-filter.

Let $F_i(L) = \{F^{\Delta} : F \in F(L)\} = \{F : F \text{ is a } j\text{-filter of } L\}$ be the set of all *j*-filters of *L*.

Theorem 17. Let F and G be filters of a locally bounded K_2 -algebra L. Then,

- (1) $(F \lor G)^{\Delta} = F^{\Delta} \lor G^{\Delta}$, (2) $(F \cap G)^{\Delta} = F^{\Delta} \cap G^{\Delta}$,
- (3) $F_i(L)$ is a modular $\{1\}$ -sublattice of F(L) and a bounded modular lattice on its own.

Proof. (1) Since $F, G \subseteq F \vee G$, then $F^{\Delta}, G^{\Delta} \subseteq (F \vee G)^{\Delta}$, by Lemma 15 (3). Thus the upper bound of F^{Δ} and G^{Δ} is $(F \vee G)^{\Delta}$. Consider H^{Δ} as another upper bound of F^{Δ} and G^{Δ} , where H is a filter of L. Then F^{Δ} , $G^{\Delta} \subseteq H^{\Delta}$. Since $F, G \subseteq F^{\Delta}, G^{\Delta}$, then $F, G \subseteq H^{\Delta}$. Hence $F \vee G \subseteq H^{\Delta}$. Then by Lemma 15 (3) and (4), $(F \lor G)^{\Delta} \subseteq H^{\Delta \Delta} = H^{\Delta}$. Therefore $(F \vee G)^{\Delta}$ is the least upper bound of F^{Δ} , G^{Δ} and hence $(F \vee G)^{\Delta} = F^{\Delta} \vee G^{\Delta}$.

- (2) We can also show that $(F \cap G)^{\Delta} = F^{\Delta} \cap G^{\Delta}$ by applying a similar method.
- (3) From (1) and (2), we obtain that $F_i(L)$ is a $\{1\}$ -sublattice of F(L), as $L \in F_i(L)$. Since F(L) is a modular lattice, then $F_i(L)$ is also a modular lattice. It is clear that L, L^{\vee} are the largest and smallest members of $F_i(L)$, respectively. Then $(F_i(L), \vee, \wedge, L^{\vee},$ L) is a bounded modular lattice on its own.

The following Theorem represents another characterization of a *j*-filter of a locally bounded K_2 -algebra L.

Theorem 18. Let F be a proper filter of a locally bounded \underline{K}_2 -algebra L. Then we have the equivalent conditions

- (1) *F* is a *j*-filter,
- (2) $x \lor j \in F$, for all $x \in L$,
- (3) *L*[∨]⊆*F*.

Proof. (1) \Rightarrow (2): Let *F* be a *j*-filter of *L*. Then $j \in F$. Since $x \lor j \ge j \in F$, for all $x \in L$, then $x \lor j \in F$. $(2) \Rightarrow (3)$: Let $x \in L^{\vee}$. Then $x \ge j \in L^{\vee}$. Thus we have $x = x \lor j \in F$, by (2). Then $x \in F$ and hence $L^{\vee} \subseteq F$. (3) ⇒ (1): Since $j \in L^{\vee} \subseteq F$, then F is a j-filter of L.

4. Principal *j*-filters of locally bounded K₂-algebras

In this section, we define and characterize the principal *j*-filters of a locally bounded K_2 -algebra L. Then we investigate the basic properties of such

For any element x of a locally bounded K_2 -algebra L with $L^{\vee} = [j]$, we write $(x)^{\Delta}$ instead of $(\{x\})^{\Delta}$. We observe that $(x)^{\Delta} = \{y \in L : y^{\circ \circ} > x^{\circ \circ} \land j\}.$

It is clear that $(1)^{\Delta} = L^{\vee}$ and $(0)^{\Delta} = L$ are the smallest and largest *j*-filters of *L*, respectively.

Lemma 19. Let L be a locally bounded K₂-algebra. Then $(x)^{\Delta}$ is a principal j-filter containing x, precisely $(x)^{\Delta}$ $[x^{\circ \circ} \wedge j) = [x^{\circ \circ}) \vee L^{\vee}.$

Proof. According to Lemma 14, $(x)^{\Delta}$ is a *j*-filter of L containing x. Now, we show that $(x)^{\Delta} = [x^{\circ} \wedge j]$. Let $y \in (x)^{\Delta}$. Then $y^{\circ \circ} \geq x^{\circ \circ} \wedge j$. Thus we have

$$y = y°° \land (y \lor j) \ge x°° \land j \land (y \lor j) = x°° \land j, as j \land (y \lor j) = j.$$

Hence $y \in [x^{\circ \circ} \land j)$. Therefore $(x)^{\Delta} \subseteq [x^{\circ \circ} \land j)$. Conversely, let

 $y \in [x^{\circ} \land j)$. Then $y^{\circ} \ge y \ge x^{\circ} \land j$ implies $y \in (x)^{\Delta}$. Thus $[x^{\circ \circ} \wedge j) \subseteq (x)^{\Delta}$. Consequently, $(x)^{\Delta} = [x^{\circ \circ} \wedge j)$.

Theorem 20. Let x and y be two elements of a locally bounded K2-algebra L. Then,

- (1) $[x] \subseteq (x)^{\Delta}$,
- (2) $(x)^{\Delta} = (x^{\circ \circ})^{\Delta}$, (3) $x^{\circ \circ} = y^{\circ \circ} \Rightarrow (x)^{\Delta} = (y)^{\Delta}$ but the converse is not
- (4) $x \le y \Leftrightarrow (y)^{\Delta} \subseteq (x)^{\Delta}$, (5) $x \in (y)^{\Delta} \Leftrightarrow (x)^{\Delta} \subseteq (y)^{\Delta}$.

Proof. (1) Let $y \in [x]$. Then $y \ge x$ implies $y^{\circ \circ} \ge x$ $x^{\circ \circ} \geq x^{\circ \circ} \wedge j$. Therefore $y \in (x)^{\Delta}$ and hence $[x] \subseteq (x)^{\Delta}$. (2) Using the fact that $x^{\circ \circ \circ} = x^{\circ \circ}$, we get

$$(x^{\circ \circ})^{\Delta} = \{ y \in L : y^{\circ \circ} \geq x^{\circ \circ \circ} \wedge j \}$$

$$= \{ y \in L : y^{\circ \circ} \ge x^{\circ \circ} \land j \}$$

$$=(x)^{\Delta}$$
.

(3) Let $x^{\circ \circ} = y^{\circ \circ}$. Then,

$$(x)^{\Delta} = \{a \in L : a^{\circ \circ} \geq x^{\circ \circ} \wedge j\}$$

$$= \{ a \in L : a^{\circ \circ} \ge y^{\circ \circ} \land j \}$$

$$=(y)^{\Delta}$$
.

In Example 12, $(1)^{\Delta} = (j)^{\Delta} = [j]$ but $1^{\circ \circ} \neq j^{\circ \circ}$. So the converse is not true.

(4) Let $x \le y$. Then $x^{\circ \circ} \le y^{\circ \circ}$ and $x^{\circ \circ} \land j \le y^{\circ \circ} \land j$. Let $a \in (y)^{\Delta}$. Then $a^{\circ \circ} \geq y^{\circ \circ} \land j \geq x^{\circ \circ} \land j$. Hence $a \in (x)^{\Delta}$. Thus $(y)^{\Delta} \subseteq (x)^{\Delta}$.

Conversely, let $(y)^{\Delta} \subseteq (x)^{\Delta}$. Then,

$$y \in (y)^{\Delta} \subseteq (x)^{\Delta}$$
.

$$\Rightarrow y^{\circ \circ} \geq x^{\circ \circ} \wedge j$$

$$\Rightarrow y = y^{\circ} \land (y \lor j) \ge x^{\circ} \land j \land (y \lor j)$$

 \Rightarrow $y \ge x^{\circ} \land j$, by the absorption identity

$$\Rightarrow y \ge x^{\circ} \land j \ge x \land j, \text{ as } x^{\circ} \ge x.$$

We claim that $x \le j$. If $j \le x$, then $(x)^{\Delta}$ is a proper subset of $(i)^{\Delta} = L^{\vee}$, which is a contradiction as L^{\vee} is the smallset *j*-filter of *L*. Therefore $x \le y$.

(5) Let $a \in (x)^{\Delta}$ and $x \in (y)^{\Delta}$. Then $a^{\circ \circ} \ge x^{\circ \circ} \land j$ and $x^{\circ \circ} \geq y^{\circ \circ} \wedge j$. It follows that $a^{\circ \circ} \geq y^{\circ \circ} \wedge j$. Then $a \in (y)^{\Delta}$ and hence $(x)^{\Delta} \subseteq (y)^{\Delta}$. Conversely, let $(x)^{\Delta} \subseteq (y)^{\Delta}$. Then by Lemma 19, $x \in (x)^{\Delta} \subseteq (y)^{\Delta}$.

Theorem 21. Let L be a locally bounded \underline{K}_2 -algebra. Then $(x)^{\Delta}$ represents every principal j-filter of L, for some $x \in L$.

Proof. Let F = [x] be a principal *j*-filter of L. Let $y \in [x)$. Then $y \ge x$ implies $y^{\circ \circ} \ge x^{\circ \circ} \ge x^{\circ \circ} \land j$. Thus $y \in (x)^{\Delta}$. Hence $F \subseteq (x)^{\Delta}$. Conversely, let $y \in (x)^{\Delta}$. Then $y \ge x^{\circ \circ} \land j \ge x \land j$. Hence $y \in [x) \lor L^{\lor} = [x)$, as $L^{\lor} = [j]$ is the smallest *j*-filter of *L*. Then $y \in [x)$. Therefore $(x)^{\Delta} \subseteq [x]$. Then every principal *j*-filter [x] can be expressed as $(x)^{\Delta}$.

The set of all principal *j*-filters of L is denote by $F_i^p(L) = \{(x)^{\Delta} : x \in L\}.$

Theorem 22. Let x and y be two elements of a locally bounded K2-algebra L. Then,

(1)
$$(x \wedge y)^{\Delta} = (x)^{\Delta} \vee (y)^{\Delta}$$

(2)
$$(x \lor y)^{\Delta} = (x)^{\Delta} \cap (y)^{\Delta}$$
,

(3) $F_i^p(L)$ is a bounded sublattice of $F_i(L)$.

Proof. (1) Let $x, y \in L$. Then,

$$(x \wedge y)^{\Delta} = [(x \wedge y)^{\circ \circ} \wedge j)$$

$$= [x^{\circ \circ} \wedge y^{\circ \circ} \wedge j)$$

$$= [(x^{\circ \circ} \land j) \land (y^{\circ \circ} \land j))$$

$$=[x^{\circ} \wedge j) \vee [y^{\circ} \wedge j)$$

$$=(x)^{\Delta}\vee(y)^{\Delta}.$$

(2) Since $x, y \le x \lor y$, then by Theorem 20, $(x \lor y)^{\Delta} \subseteq (x)^{\Delta}$, $(y)^{\Delta}$. Thus $(x \lor y)^{\Delta} \subseteq (x)^{\Delta} \cap (y)^{\Delta}$. Conversely, let $a \in (x)^{\Delta} \cap (y)^{\Delta}$. Then $a^{\circ \circ} \ge x^{\circ \circ} \land j$ and $a^{\circ \circ} \ge y^{\circ \circ} \land j$. Hence,

$$a^{\circ \circ} \ge (x^{\circ \circ} \land j) \lor (y^{\circ \circ} \land j) = (x \lor y)^{\circ \circ} \land j.$$

Then $a \in (x \lor y)^{\Delta}$. Thus $(x)^{\Delta} \cap (y)^{\Delta} \subseteq (x \lor y)^{\Delta}$.

Therefore $(x \lor y)^{\Delta} = (x)^{\Delta} \cap (y)^{\Delta}$.

(3) We observe that $(0)^{\Delta} = L$ and $(1)^{\Delta} = L^{\vee}$ are the greatest and smallest principal *j*-filters of *L*, respectively. Then by (1) and (2), $(F_j^p(L); \vee, \wedge, L^{\vee}, L)$ is a bounded sublattice of $F_j(L)$.

The following lemma shows that the element j is a distributive element of a locally bounded \underline{K}_2 -algebra L, which is a useful property.

Lemma 23. Let L be a locally bounded K_2 -algebra. Then

(1)
$$(a \lor b) \land j = (a \land j) \lor (b \land j)$$
, for all $a, b \in L^{\circ \circ}$,

(2)
$$(x \lor y) \land j = (x \land j) \lor (y \land j)$$
, for all $x, y \in L$.

Proof. (1) Let $a,b \in L^{\circ \circ}$. Then $a^{\circ \circ} = a,b^{\circ \circ} = b$ and hence

 $(a \lor b)^{\circ \circ} = a \lor b$. Using Theorem 22 (2), we have

$$(a \lor b)^{\Delta} = (a)^{\Delta} \cap (b)^{\Delta},$$

$$\Rightarrow [(a \lor b) °° \land j) = [a °° \land j) \cap [b °° \land j)$$

$$\Rightarrow [(a \lor b) \land j) = [(a \land j) \lor (b \land j)).$$

Then $(a \lor b) \land j = (a \land j) \lor (b \land j)$.

(2) Since $x = x^{\circ} \land (x \lor j), y = y^{\circ} \land (y \lor j)$, then we get

$$(x \wedge j) \vee (y \wedge j) = ((x^{\circ \circ} \wedge (x \vee j)) \wedge j) \vee ((y^{\circ \circ} \wedge (y \vee j)) \wedge j)$$

 $=(x^{\circ\circ} \wedge j) \vee (y^{\circ\circ} \wedge j)$, by the absorption identity

$$=(x^{\circ}\circ y^{\circ}\circ)\wedge j, by(1)$$

$$=(x \lor y)^{\circ} \land j$$

$$=(x\lor y)^{\circ} \land ((x\lor y)\lor j)\land j$$
, as $j \le (x\lor y)\lor j$

$$= \{(x \lor y) \degree \land ((x \lor y) \lor j)\} \land j$$

$$=(x\lor y)\land j$$
, where $x\lor y=(x\lor y)^{\circ}\land((x\lor y)\lor j)$.

Therefore j is a distributive element of L.

Lemma 24. Let L be a locally bounded \underline{K}_2 -algebra. Then.

(1)
$$(x)^{\Delta} = L^{\vee} \Leftrightarrow x \in L^{\vee}$$
,

(2)
$$(x)^{\Delta} = [x] \Leftrightarrow x \in L^{\wedge},$$

$$(3) (x)^{\Delta} = L \Leftrightarrow x = 0$$

Proof. (1) Let $(x)^{\Delta} = L^{\vee}$. Then $[x^{\circ \circ} \wedge j) = [j]$. Implies $x^{\circ \circ} \wedge j = j$.

Then $x^{\circ \circ} \ge j$ and hence $x^{\circ \circ} \in [j] = L^{\vee}$. Now, $x^{\circ \circ} \in L^{\vee}$, $x \lor j \in L^{\vee}$ imply

 $x = x^{\circ \circ} \land (x \lor j) \in L^{\lor}$. Conversely, let $x \in L^{\lor} = [j]$. Then $x^{\circ \circ} \ge x \ge j$. Thus

$$(x)^{\Delta} = [x^{\circ \circ} \wedge j)$$

$$= [j] = L^{\vee}$$
, as $j \leq x^{\circ \circ}$.

(2) Let $(x)\Delta = [x]$. Since $x = x^{\circ} \wedge (x \vee x^{\circ})$, then,

$$(x)^{\Delta} = [x) \Rightarrow [x^{\circ \circ} \land j) = [x)$$

$$\Rightarrow x^{\circ} \land i = x$$

$$\Rightarrow x^{\circ} \land i \land (x \lor x^{\circ}) = x \land (x \lor x^{\circ})$$

 $\Rightarrow x \land j = x$, by the absorption identity.

Thus $x \le j$ and hence $x \in L^{\wedge}$. Conversely, at first we need to prove that $L^{\wedge} \subseteq L^{\circ \circ}$. Let $x \in L^{\wedge}$. Then $x \wedge x^{\circ} = x$. Implies $(x \wedge x^{\circ})^{\circ \circ} = x^{\circ \circ}$. Therefore,

 $x = x \wedge x^{\circ} = x^{\circ \circ} \wedge x^{\circ \circ \circ} = x^{\circ \circ}$. Then $x = x^{\circ \circ} \in L^{\circ \circ}$. Now,

$$(x)^{\Delta} = [x^{\circ \circ} \wedge j)$$

$$= [x \wedge j)$$

= [x), as $x \le j$, by Remark 5.

(3) Let x = 0. Then $x^{\circ \circ} = 0$ and $(x)^{\Delta} = [x^{\circ \circ} \wedge j) = [0) = L$. Conversely, let $(x)^{\Delta} = L$. Then $[x^{\circ \circ} \wedge j] = L = [0]$ implies $x^{\circ \circ} \wedge j = 0$. Since $j \neq 0$, then $x^{\circ \circ} = 0$. Thus x = 0.

Now, we give a characterization of a j-filter of a locally bounded \underline{K}_2 -algebra L via principal j-filters of L.

Theorem 25. Let F be a filter of a locally bounded \underline{K}_2 -algebra L. Then F is a j-filter of L if and only if $F = \bigcup_{x \in F} (x)^{\Delta}$.

Proof. Let *F* be a *j*-filter and $y \in F$. Since $y^{\circ \circ} \ge y^{\circ \circ} \land j$, then

 $y \in (y)^{\Delta} \subseteq \bigcup_{x \in F} (x)^{\Delta}$. Thus $F \subseteq \bigcup_{x \in F} (x)^{\Delta}$. On the other hand, let $y \in \bigcup_{x \in F} (x)^{\Delta}$. Then $y \in (z)^{\Delta}$ for some $z \in F$. Hence $y^{\circ \circ} \ge z^{\circ \circ} \land j \in F$. This implies that

$$y = y^{\circ} \land (y \lor j) \ge z^{\circ} \land j \land (y \lor j)$$

 $y \ge z^{\circ \circ} \land j \in F$, by the absorption identity.

Then $y \in F$. Therefore $\bigcup_{x \in F} (x)^{\Delta} \subseteq F$ and hence $F = \bigcup_{x \in F} (x)^{\Delta}$.

Conversely, since $j \in (x)^{\Delta} \subseteq \bigcup_{x \in F} (x)^{\Delta} = F$, then F is a j-filter of L.

Theorem 26. The class $F_j^p(L)$ of all principal j-filters of a locally bounded \underline{K}_2 -algebra L forms a Kleene algebra.

Proof. By Theorem 22 (3), $(F_j^p(L); \vee, \wedge, L^{\vee}, L)$ is a bounded lattice. Now, we show that $F_j^p(L)$ is a distributive lattice. Let $(x)^{\Delta}, (y)^{\Delta}, (z)^{\Delta} \in F_j^p(L)$. Then,

$$(x)^{\Delta} \cap [(y)^{\Delta} \vee (z)^{\Delta}] = (x)^{\Delta} \cap (y \wedge z)^{\Delta}$$

$$= [x^{\circ} \land j) \cap [(y \land z)^{\circ} \land j)$$

$$= [(x^{\circ \circ} \land j) \lor ((y \land z)^{\circ \circ} \land j))$$

$$= [(x^{\circ} \lor (y \land z)^{\circ}) \land j), \text{ by Lemma 23}$$

$$= [(x^{\circ \circ} \lor y^{\circ \circ}) \land (x^{\circ \circ} \lor z^{\circ \circ}) \land j)$$
, by distributivity of $L^{\circ \circ}$

$$= [(x \lor y)^{\circ} \land j) \lor [(x \lor z)^{\circ} \land j)$$

$$=(x\vee y)^{\Delta}\vee(x\vee z)^{\Delta}$$

=
$$[(x)^{\Delta} \cap (y)^{\Delta}] \vee [(x)^{\Delta} \cap (z)^{\Delta}]$$
, by Theorem 22 (2).

Hence $F_j^p(L)$ is a distributive lattice. To show that $F_j^p(L)$ is a Kleene algebra, define a unary operation \bar{f} on $F_j^p(L)$ by $\overline{(x)^\Delta}=(x^\circ)^\Delta$, for all $(x)^\Delta\!\in\! F_j^p(L)$. Then we have

$$\overline{\overline{(x)^{\Delta}}} = (x^{\circ \circ})^{\Delta} = (x)^{\Delta}, \overline{(1)^{\Delta}} = (1^{\circ})^{\Delta} = (0)^{\Delta},$$
and $\overline{(x)^{\Delta} \cap (y)^{\Delta}} = \overline{(x \vee y)^{\Delta}}, \text{by}$

Theorem 22(2)

$$=((x\vee y)^{\circ})^{\Delta}$$

$$=(x^{\circ} \wedge y^{\circ})^{\Delta}$$

$$=(x^{\circ})^{\Delta}\vee(y^{\circ})^{\Delta}$$
, by Theorem 22(1)

$$= \overline{(x)^{\Delta}} \vee \overline{(y)^{\Delta}}$$

Since $y \wedge y^{\circ} \leq x \vee x^{\circ}$, then we have

$$(x)^{\Delta} \cap \overline{(x)^{\Delta}} = (x)^{\Delta} \cap (x^{\circ})^{\Delta}$$

$$=(x \lor x^\circ)^\Delta \subseteq (y \land y^\circ)^\Delta$$
, by Theorem 20(4)

$$=(y)^{\Delta}\vee(y^{\circ})^{\Delta}$$
, by Theorem 22(1)

$$=(y)^{\Delta}\vee\overline{(y)^{\Delta}}.$$

Hence $(F_j^p(L); \lor, \land, ^-, L^\lor, L)$ is a Kleene algebra. Now, we construct an example to clarify the above results.

Example 27. Consider the locally bounded \underline{K}_2 -algebra L as in Fig. 2.

We observe that $L^{\vee} = [j] = \{1, x, y, z, e, c, j\}$ and $L^{\circ \circ} = \{0, a, b, c, d, 1\}$.

A description of the lattice $F_j^p(L)$ is given in Fig. 3. It is clear that $(F_i^p(L), ^-)$ is a Kleene algebra.

Fig. 2. L is a locally bounded \underline{K}_2 – algebra.

Fig. 3. $F_i^p(L)$ is a Kleene algebra.

Define a relation ψ on a locally bounded K_2 -algebra L by:

$$(x,y) \in \psi \Leftrightarrow x^{\circ} = y^{\circ} \Leftrightarrow x^{\circ} = y^{\circ}.$$

Theorem 28. Let L be a locally bounded \underline{K}_2 -algebra. Then we have

- (1) ψ is a congruence relation on L,
- (2) $[x]_{,\nu} = [x^{\circ \circ}]_{,\nu}$, where $[x]_{,\nu} = \{a \in L : a^{\circ \circ} = x^{\circ \circ}\}$ is the congruence class of an element x of L,
- (3) $x^{\circ \circ} = \max [x]_{\psi}$,
- (4) $[1]_{\psi} = D(L), [0]_{\psi} = \{0\},\$
- (5) L/ψ is a Kleene algebra,
- (6) $L^{\circ \circ} \cong L/\psi$.

Proof. (1) Clearly ψ is an equivalence relation on L. Let $(a,b), (c,d) \in \psi$. Then $a^{\circ \circ} = b^{\circ \circ}$ and $c^{\circ \circ} = d^{\circ \circ}$. Thus we have

$$(a \lor c)^{\circ \circ} = a^{\circ \circ} \lor c^{\circ \circ}$$

- $=b^{\circ\circ}\vee d^{\circ\circ}$
- $=(b\vee d)^{\circ\circ}$

and

$$(a \wedge c)^{\circ \circ} = a^{\circ \circ} \wedge c^{\circ \circ}$$

- $=b^{\circ\circ} \wedge d^{\circ\circ}$
- $=(b \wedge d)^{\circ}$.

Then $(a \lor c, b \lor d), (a \land c, b \land d) \in \psi$. Therefore ψ is a lattice congruence on *L*. Let $(x,y) \in \psi$. Then $x^{\circ \circ} = y^{\circ \circ}$ implies $x^{\circ \circ \circ} = y^{\circ \circ \circ}$. Thus $(x^{\circ}, y^{\circ}) \in \psi$, and hence ψ is a congruence relation on L.

(2) Since $[x]_{\psi} = \{a \in L : a^{\circ \circ} = x^{\circ \circ}\}$, then

$$[x^{\circ \circ}]_{\downarrow} = \{a \in L : a^{\circ \circ} = x^{\circ \circ \circ} = x^{\circ \circ}\} = [x]_{\downarrow}$$

- (3) Let $a \in [x]_{,h}$. Then $a \le a^{\circ \circ} = x^{\circ \circ}$, for all $a \in [x]_{,h}$. Thus $x^{\circ \circ} = \max [x]_{\psi}$.
- (4) Clearly, $[1]_{\psi} = \{a \in L : a^{\circ \circ} = 1^{\circ \circ} = 1\} = D(L)$ and

$$[0]_{\psi} = \{a \in L : a^{\circ \circ} = 0^{\circ \circ} = 0\} = \{0\}.$$

(5) Consider the quotient set $L/\psi = \{[x]_{\psi} : x \in L\}$. It is known that

 $(L/\psi; \vee, \wedge, [0]_{\psi}, [1]_{\psi})$ is a bounded lattice, where

$$[x]_{\psi} \vee [y]_{\psi} = [x \vee y]_{\psi},$$

$$[x]_{\psi} \wedge [y]_{\psi} = [x \wedge y]_{\psi}.$$

Define a unary operation \blacksquare on L/ψ by $[x]_{\psi}^{\blacksquare} = [x^{\circ}]_{\psi}$, for every $[x]_{\psi} \in L/\psi$. Then we have

$$([x]_{,\mu} \wedge [y]_{,\mu})^{\blacksquare} = [x \wedge y]_{,\mu}^{\blacksquare}$$

$$=[(x \wedge y)^{\circ}]_{\psi}$$

$$=[x^{\circ}\vee y^{\circ}]_{\psi}$$

$$=[x^{\circ}]_{,\nu}\vee[y^{\circ}]_{,\nu}$$

$$=[x]_{,\nu}^{\blacksquare}\vee[y]_{,\nu}^{\blacksquare},$$

$$[x]_{\psi}^{\blacksquare\blacksquare} = [x^{\circ}]_{\psi} = [x]_{\psi} \text{ and } [1]_{\psi}^{\blacksquare} = [1^{\circ}]_{\psi} = [0]_{\psi}.$$

$$[x]_{\psi} \wedge [x]_{\psi}^{\blacksquare} = [x \wedge x^{\circ}]_{\psi} \subseteq [y \vee y^{\circ}] = [y]_{\psi} \vee [y]_{\psi}^{\blacksquare}.$$

Therefore $(L/\psi;^{\blacksquare})$ is a Kleene algebra.

(6) Define a map $f: L^{\circ \circ} \to L/\psi$ by $f(a) = [a]_{\psi}$, for all

One can show that f is a (0,1) lattice homomorphism. Since

$$f(a^{\circ}) = [a^{\circ}]_{\psi} = [a]_{\psi}^{\blacksquare} = (f(a))^{\blacksquare},$$

then f is a homomorphism. To show that f is an injective map, let f(a) = f(b). Then $[a]_{\psi} = [b]_{\psi}$ implies $a^{\circ \circ} = b^{\circ \circ}$. Thus a = b, as $a, b \in L^{\circ \circ}$. For every $[a]_{\psi} \in L/\psi$ we have $[a]_{\psi} = [a^{\circ\circ}]_{\psi} = f(a^{\circ\circ}), a^{\circ\circ} \in L^{\circ\circ}.$ Then f is a surjective map and hence f is an isomorphism of the Kleene algebras $L^{\circ\circ}$ and L/ψ .

Lemma 29. *Let x and y be any two elements of a locally* bounded K_2 -algebra L. Then,

- (1) $[x]_{\psi} = [y]_{\psi} \Rightarrow (x)^{\Delta} = (y)^{\Delta},$ (2) $[[x]_{\psi}] = \{y \in L : y^{\circ} \geq x^{\circ}\},$
- (3) $[[x]_{\psi}] \subseteq (x)^{\Delta}$
- (4) $[[x]_{\psi}] = L^{\vee}$, if $x \in (L^{\vee} D(L))$,
- (5) $[[x]_{i}]$ is not a *j*-filter, if $x \in D(L)$.

Proof. (1) Let $[x]_{\psi} = [y]_{\psi}$. Then $x^{\circ \circ} = y^{\circ \circ}$. Then by Theorem 20 (3), we get $(x)^{\Delta} = (y)^{\Delta}$.

(2) Since $[x]_{,\nu} = \{a \in L : a^{\circ \circ} = x^{\circ \circ}\}$, then

$$[x]_{\psi} = \{ y \in L : y \ge a_1 \land a_2 \land ... \land a_n, a_i \in [x]_{\psi}, i = 1, ..., n \}$$

$$= \{ y \in L : y^{\circ \circ} \geq (a_1 \wedge a_2 \wedge ... \wedge a_n)^{\circ \circ} \}$$

$$= \{ y \in L : y^{\circ \circ} \ge x^{\circ \circ} \}, \text{ as } a_1^{\circ \circ} = \dots = a_n^{\circ \circ} = x^{\circ \circ}.$$

(3) Let $y \in [[x]_{,i})$. Then $y^{\circ \circ} \ge x^{\circ \circ} \ge x^{\circ \circ} \land j$ implies

$$y = y^{\circ \circ} \land (y \lor j) \ge (x^{\circ \circ} \land j) \land (y \lor j) \ge x^{\circ \circ} \land j.$$

Hence $y \in [x^{\circ \circ} \land j) = (x)^{\Delta}$. Therefore $[[x]_{\psi}) \subseteq (x)^{\Delta}$. (4) Let $x \in (L^{\vee} - D(L))$. Then $x \in L^{\vee}$ and $x \notin D(L)$. Now, we have

$$\begin{split} & \big[[x]_{\psi} \big) = \{ y \in L : y^{\circ \circ} \geq x^{\circ \circ} \} \\ & = \{ y \in L : y^{\circ \circ} \geq x^{\circ \circ} \geq x \geq j \}, \text{ as } x \in L^{\vee} \\ & = \{ y \in L : y = y^{\circ \circ} \land (y \lor j) \geq j \land (y \lor j) = j \} \\ & = \{ y \in L : y \geq j \} = [j] = L^{\vee}. \\ & (5) \text{ Let } x \in D(L). \text{ Then } x^{\circ} = 0 \text{ and } \\ & \big[[x]_{\psi} \big) = \{ y \in L : y^{\circ \circ} \geq x^{\circ \circ} \} \\ & = \{ y \in L : y^{\circ \circ} \geq 1 \} \\ & = \{ y \in L : y^{\circ \circ} = 1 \} \\ & = D(L). \end{split}$$

5. *j*-lattice congruences of a locally bounded \underline{K}_2 -algebra

Since $j \notin D(L)$, then $[[x]_{\psi})$ is not a *j*-filter of *L*.

In this section, we investigate the relationship between the lattice congruence relations and the j-filters of a locally bounded \underline{K}_2 -algebra L.

Definition 30. A lattice congruence θ on a locally bounded \underline{K}_2 -algebra L is called a j-lattice congruence on L if $\in Coker \ \theta$.

Lemma 31. Let θ be a j-lattice congruence on L. Then Coker θ is a j-filter of L.

Define a binary relation θ_j on a locally bounded \underline{K}_2 -algebra L by:

$$(x,y) \in \theta_i \Leftrightarrow x \land j = y \land j$$
, where $x,y \in L$.

Theorem 32. Let L be a locally bounded \underline{K}_2 -algebra. Then we have

- (1) θ_j is a j-lattice congruence with $Co \ker \theta_j = L^{\vee}$,
- (2) $[x]_{\theta_j} = [x^{\circ \circ}]_{\theta_j}$, where $[x]_{\theta_j}$ is the congruence class of x modulo θ_j ,
- (3) L/θ_i is a Kleene algebra.

Proof. (1) Clearly, θ_j is a lattice congruence. Now, we prove that $Co \ker \theta_j = L^{\vee}$.

Co ker
$$\theta_j = \{x \in L : (x, 1) \in \theta_j\}$$

$$= \{x \in L : x \land j = 1 \land j\}$$

$$= \{x \in L : x \land j = j\}$$

$$= \{x \in L : x > j\}$$

$$=[j]=L^{\vee}.$$

- (2) Since $x = x^{\circ \circ} \land (x \lor j)$, then $x \land j = x^{\circ \circ} \land (x \lor j) \land j = x^{\circ \circ} \land j$. This implies $(x, x^{\circ \circ}) \in \theta_j$ and hence $[x]_{\theta_j} = [x^{\circ \circ}]_{\theta_i}$.
- (3) It is observed that $L/\theta_j = \{[x]_{\theta_j} : x \in L\}$ and $[x]_{\theta_j} = \{y \in L : (y,x) \in \theta_j\}$ is the congruence class of x modulo θ_j . It is known that $(L/\theta_j; \vee, \wedge, [0]_{\theta_j}, [1]_{\theta_j})$ is a bounded lattice, where

$$\begin{split} [x]_{\theta_j} \vee [y]_{\theta_j} = [x \vee y]_{\theta_j}, [x]_{\theta_j} \wedge [y]_{\theta_j} = [x \wedge y]_{\theta_j} \text{ and } [1]_{\theta_j} \\ = L^{\vee}, [0]_{\theta_i} = \{0\}. \end{split}$$

We show that L/θ_j is a distributive lattice. Let $[x]_{\theta_j}$, $[y]_{\theta_j}$, $[z]_{\theta_j}$ \in L/θ_j , we have $[x]_{\theta_j} \land ([y]_{\theta_j} \lor [z]_{\theta_j}) = [x^{\circ \circ}]_{\theta_j} \land ([y^{\circ \circ}]_{\theta_i} \lor [z^{\circ \circ}]_{\theta_i})$, by (2)

$$=[x^{\circ\circ}]_{\theta_i} \wedge [y^{\circ\circ} \vee z^{\circ\circ}]_{\theta_i}$$

$$=[x^{\circ\circ} \land (y^{\circ\circ} \lor z^{\circ\circ})]_{\theta_i}$$

$$=[(x^{\circ} \wedge y^{\circ}) \vee (x^{\circ} \wedge z^{\circ})]_{\theta_i}$$
, by distributivity of L°

$$= [x^{\circ} \land y^{\circ}]_{\theta_i} \lor [x^{\circ} \land z^{\circ}]_{\theta_i}$$

$$= \Big([x^{\circ\,\circ}]_{\theta_j} \wedge [y^{\circ\,\circ}]_{\theta_j} \Big) \vee \Big([x^{\circ\,\circ}]_{\theta_j} \wedge [z^{\circ\,\circ}]_{\theta_j} \Big)$$

$$= \left([x]_{\theta_i} \wedge [y]_{\theta_i} \right) \vee \left([x]_{\theta_i} \wedge [z]_{\theta_i} \right), \text{ by } (2).$$

Then L/θ_j is a bounded distributive lattice. Define an operation $^{\diamond}$ on L/θ_j by $[x]^{\diamond}_{\theta_j} = [x^{\circ}]_{\theta_j}$, for every $[x]_{\theta_j} \in L/\theta_j$. Then we have $[x]^{\diamond \diamond}_{\theta_j} = [x^{\circ \circ}]_{\theta_j} = [x]_{\theta_j}$,

$$\left([x]_{\theta_j} \wedge [y]_{\theta_j} \right)^{\circ} = [x \wedge y]^{\circ}_{\theta_j}$$

$$=[(x \wedge y)^{\circ}]_{\theta_i}$$

$$=[x^{\circ}\vee y^{\circ}]_{\theta_i}$$

$$=[x^{\circ}]_{\theta_{i}}\vee[y^{\circ}]_{\theta_{i}}$$

$$=[x]^{\diamond}_{\theta_i}\vee[y]^{\diamond}_{\theta_i},$$

and

$$[x]_{\theta_j} \wedge [x]_{\theta_j}^{\diamond} = [x \wedge x^{\circ}]_{\theta_j} \leq [y \vee y^{\circ}] = [y]_{\theta_j} \vee [y]_{\theta_j}^{\diamond}.$$

Therefore $(L/\theta_j; ^\circ)$ is a Kleene algebra. Suppose that F is a j-filter of a locally bounded \underline{K}_2 -algebra L. Define a relation θ_F on L as follows:

$$(x,y) \in \theta_F \Leftrightarrow x^{\circ \circ} \land f^{\circ \circ} \land j = y^{\circ \circ} \land f^{\circ \circ} \land j, \text{ for some } f \in F.$$

Theorem 33. Let F and G be j-filters of a locally bounded K_2 -algebra L. Then

- (1) θ_F is a *j*-lattice congruence on L with $Co \ker \theta_F = F$.
- (2) $F \subseteq G \Leftrightarrow \theta_F \subseteq \theta_G$.

Proof. (1) It is clear that θ_F is an equivalence relation on L. Let $(a,b), (c,d) \in \theta_F$. Then $a^{\circ \circ} \wedge f_1^{\circ \circ} \wedge j = b^{\circ \circ} \wedge f_1^{\circ \circ} \wedge j$ and $c^{\circ \circ} \wedge f_2^{\circ \circ} \wedge j = d^{\circ \circ} \wedge f_2^{\circ \circ} \wedge j$, for some $f_1, f_2 \in F$. Thus we have

$$(a \lor c) \circ \land (f_1 \land f_2) \circ \land j = (a \circ \lor c \circ) \land (f_1 \circ \land f_2 \circ) \land j$$

$$= [(a \circ \land f_1 \circ \land f_2 \circ) \lor (c \circ \land f_1 \circ \land f_2 \circ)]$$

$$\land j, \text{ by distributivity of } L \circ$$

$$= (a \circ \land f_1 \circ \land f_2 \circ \land j) \lor (c \circ \land f_1 \circ \land f_2 \circ \land j), \text{ by }$$

$$Lemma 23$$

$$= (b \circ \land f_1 \circ \land f_2 \circ \land j) \lor (d \circ \land f_1 \circ \land f_2 \circ \land j)$$

$$= (b \circ \lor d \circ) \land (f_1 \circ \land f_2 \circ \land j), \text{ }$$

$$= (b \lor d) \circ \land (f_1 \land f_2) \circ \land j, \text{ }$$

$$where f_1 \land f_2 \in F, \text{ and}$$

$$(a \land c) \circ \land (f_1 \land f_2) \circ \land j = (a \circ \land c \circ) \land f_1 \circ \land f_2 \circ \land j$$

$$= (a \circ \land f_1 \circ \land j) \land (c \circ \land f_2 \circ \land j)$$

$$= (b \circ \land f_1 \circ \land j) \land (d \circ \land f_2 \circ \land j)$$

$$= (b \circ \land d \circ) \land f_1 \circ \land f_2 \circ \land j$$

$$= (b \land d) \circ \land (f_1 \land f_2) \circ \land j.$$

Hence $(a \lor c, b \lor d), (a \land c, b \land d) \in \theta_F$. Then θ_F is a lattice congruence on *L*. Now, we show that $Co \ker \theta_F =$ *F*. Let $y \in Co \ker \theta_F$. Then $(y,1) \in \theta_F$ and hence $y^{\circ \circ} \wedge f^{\circ \circ} \wedge j = 1^{\circ \circ} \wedge f^{\circ \circ} \wedge j$, for some $f \in F$. This gives $y^{\circ \circ} \geq f^{\circ \circ} \land j \in F$. Since $y^{\circ \circ}, y \lor j \in F$, then $y^{\circ} \land (y \lor j) \in F$. Therefore $Co \ker \theta_F \subseteq F$. On the other hand, let $f \in F$. Thus $f \geq j$. Then $f^{\circ\circ} \wedge f_1^{\circ\circ} \wedge j = 1^{\circ\circ} \wedge f_1^{\circ\circ} \wedge j$, for some $f_1 \in F$. implies (f, 1) $\in \theta_F$. Thus $f \in Co \ker \theta_F$. Then $F \subseteq Co \ker \theta_F$. Consequently, Co ker $\theta_F = F$ and therefore θ_F is a *j*-lattice congruence on L.

(2) Let $F \subseteq G$. Suppose that $(x,y) \in \theta_F$. Then $x^\circ \land f^\circ \land f = y^\circ \land f^\circ \land f$ for some $f \in F \subseteq G$. Thus $(x,y) \in \theta_G$. Therefore $\theta_F \subseteq \theta_G$. Conversely, let $\theta_F \subseteq \theta_G$. Then $F = Co \ker \theta_F \subseteq Co \ker \theta_G = G$. Hence $F \subseteq G$.

Theorem 34. For any two j-filters F and G of a locally bounded \underline{K}_2 -algebra L, we have

- (1) $\theta_F \vee \theta_G = \theta_{F \vee G}$,
- (2) $\theta_F \cap \theta_G = \theta_{F \cap G}$.

Proof. (1) Since $F, G \subseteq F \lor G$, then by Theorem 33, $\theta_F \subseteq \theta_{F \lor G}$ and $\theta_G \subseteq \theta_{F \lor G}$. Hence $\theta_{F \lor G}$ is an upper bound of θ_F and θ_G . Suppose that θ_H is an upper bound of θ_F and θ_G . Thus we have $\theta_F \subseteq \theta_H$ and $\theta_G \subseteq \theta_H$. Then again by Theorem 33, $F \subseteq H$ and $G \subseteq H$. This gives $F \lor G \subseteq H$ and hence $\theta_{F \lor G} \subseteq \theta_H$. Therefore $\theta_{F \lor G}$ is the least upper bound of θ_F and θ_G . Then $\theta_F \lor \theta_G = \theta_{F \lor G}$. (2) As $F \cap G \subseteq F$ and G, then by Theorem 33, $\theta_{F \cap G} \subseteq \theta_F$ and $\theta_{F \cap G} \subseteq \theta_G$. Hence $\theta_{F \cap G}$ is a lower bound of θ_F and θ_G . Thus we have $\theta_H \subseteq \theta_F$ and $\theta_H \subseteq \theta_G$. Then again by Theorem 33, $H \subseteq F$ and $H \subseteq G$. This implies that $H \subseteq F \cap G$ and $\theta_H \subseteq G$. Therefore $\theta_{F \cap G}$ is the greatest lower bound of θ_F and θ_G . Then $\theta_F \cap \theta_G = \theta_{F \cap G}$.

Consider $Con_j(L) = \{\theta_F : F \in F_j(L)\}$ as the set of all j-lattice congruences of L that are induced by j-filters of L.

Theorem 35. Let L be a locally bounded \underline{K}_2 -algebra. Then

 $(Con_i(L); \vee, \wedge, \theta_{L^{\vee}}, \theta_L)$ is a bounded lattice.

Proof. Clearly, $\theta_{L^{\vee}}$ and $\theta_{L} = \nabla_{L}$ are the smallest and largest elements of $Con_{j}(L)$, respectively. Let $\theta_{F}, \theta_{G} \in Con_{j}(L)$ and $F, G \in F_{j}(L)$. Then by Theorem 34, we have $\theta_{F} \vee \theta_{G} = \theta_{F \vee G}$ and $\theta_{F} \cap \theta_{G} = \theta_{F \cap G}$. Thus $(Con_{j}(L), \vee, \wedge, \theta_{L^{\vee}}, \theta_{L})$ is a bounded lattice.

6. Principal *j*-lattice congruences of a locally bounded K_2 -algebra

In this section, we present and characterize the principal j-lattice congruence on a locally bounded \underline{K}_2 -algebra L and we study the relationship between the principal lattice congruences and the principal j-lattice congruences on L.

Lemma 36. If
$$F = (x)^{\Delta}$$
, for all $x \in L$, then

$$(a,b) \in \theta_{(x)^{\Delta}} \Leftrightarrow a^{\circ \circ} \wedge x^{\circ \circ} \wedge j = b^{\circ \circ} \wedge x^{\circ \circ} \wedge j,$$

and Coker
$$\theta_{(x)^{\Delta}} = (x)^{\Delta}$$
.

Proof. Let $F = (x)^{\Delta}$. Let $(a,b) \in \theta_{(x)^{\Delta}}$. $a^{\circ\circ} \wedge f^{\circ\circ} \wedge j = b^{\circ\circ} \wedge f^{\circ\circ} \wedge j$, for some $f \in (x)^{\widetilde{\Delta}} = [x^{\circ\circ} \wedge j)$. Thus $f^{\circ \circ} \geq f \geq x^{\circ \circ} \wedge j$. Then

$$a^{\circ\circ} \wedge f^{\circ\circ} \wedge j \wedge x^{\circ\circ} = b^{\circ\circ} \wedge f^{\circ\circ} \wedge j \wedge x^{\circ\circ} \text{ implies}$$

$$a^{\circ\circ} \wedge x^{\circ\circ} \wedge j = b^{\circ\circ} \wedge x^{\circ\circ} \wedge j$$
.

Since $(x)^{\Delta}$ is a *j*-filter of *L*, then by Theorem 33 (1), $\theta_{(x)^{\Delta}}$ is a *j*-lattice congruence on *L* with $Co \ker \theta_{(x)^{\Delta}} = (x)^{\Delta}$.

Now, we show that $\theta_{(x)^{\Delta}}$ is a principal *j*-lattice congruence on L.

Theorem 37. Let L be a locally bounded K₂-algebra. Then $\theta_{(x)^{\Delta}} = \theta_{(x^{\circ \circ} \wedge j, 1)}$, for all $x \in L$, that is, $\theta_{(x)^{\Delta}}$ is a principal j-lattice congruence on L.

Proof. Let $(a,b) \in \theta_{(x^{\circ \circ} \land i,1)}$. Then,

$$(a,b) \in \theta_{(x^{\circ \circ} \land j,1)}$$

$$\Rightarrow a \land x^{\circ} \land j = b \land x^{\circ} \land j$$
, by Theorem 7

$$\Rightarrow a^{\circ \circ} \land (a \lor j) \land x^{\circ \circ} \land j = b^{\circ \circ} \land (b \lor j) \land x^{\circ \circ} \land j$$

$$\Rightarrow a^{\circ} \land x^{\circ} \land ((a \lor j) \land j) = b^{\circ} \land x^{\circ} \land ((b \lor j) \land j)$$

$$\Rightarrow a^{\circ \circ} \land x^{\circ \circ} \land j = b^{\circ \circ} \land x^{\circ \circ} \land j$$
, by the absorption identity,

where $z = z^{\circ} \land (z \lor j)$ for all $z \in L$. This gives that (a, b) $\in \theta_{(x)^{\Delta}}$. Hence $\theta_{(x^{\circ \circ} \wedge j,1)} \subseteq \theta_{(x)^{\Delta}}$. Conversely, let $(a,b) \in$ $\theta_{(x)}$ Then,

$$(a,b) \in \theta_{(x)^{\Delta}}$$

$$\Rightarrow a^{\circ\circ} \wedge x^{\circ\circ} \wedge j = b^{\circ\circ} \wedge x^{\circ\circ} \wedge j$$

$$\Rightarrow a^{\circ \circ} \land x^{\circ \circ} \land (a \lor j) \land j = b^{\circ \circ} \land x^{\circ \circ} \land (b \lor j) \land j$$

$$\Rightarrow a \wedge x^{\circ} \wedge j = b \wedge x^{\circ} \wedge j$$
.

Thus $(a,b) \in \theta_{(x^{\circ\circ} \wedge j,1)}$ and hence $\theta_{(x)} \subseteq \theta_{(x^{\circ\circ} \wedge j,1)}$. Therefore $\theta_{(x)^{\Delta}} = \theta_{(x^{\circ \circ} \wedge j, 1)}$.

The following two results are two characterizations of a principal *j*-lattice congruence of a locally bounded \underline{K}_2 -algebra L.

Lemma 38. The principal lattice congruence $\theta_{(x,1)}$ of a locally bounded K_2 -algebra L is a principal j-lattice congruence on L if and only if $j \ge x$.

Proof. Let $\theta_{(x,1)}$ be a principal j-lattice congruence on *L*. Then

 $j \in Co \text{ ker } \theta_{(x,1)}$. Thus $j \land x = 1 \land x = x$. Hence $j \ge x$. Conversely, let $\theta_{(x,1)}$ be a principal lattice congruence on *L* and $j \ge x$. Then $j \land x = x = 1 \land x$ implies (j, 1) $\in \theta_{(x,1)}$ and hence $j \in Co \ker \theta_{(x,1)}$. Therefore $\theta_{(x,1)}$ is a principal *j*-lattice congruence on *L*.

Theorem 39. Let $\theta_{(x,1)}$ be a principal lattice congruence on a locally bounded \underline{K}_2 -algebra L. Then $\theta_{(x,1)} = \theta_{(x)}$ if and only if $j \geq x$.

Proof. Let $\theta_{(x,1)} = \theta_{(x)}^{\Delta}$. Then $\theta_{(x,1)}$ is a principal *j*-lattice congruence on L, by Theorem 37. Implies $j \ge x$, by Lemma 38. Conversely, let $j \ge x$. Then by Lemma 38, $\theta_{(x,1)}$ is a principal *j*-lattice congruence on L. We show that

$$\theta_{(x,1)} = \theta_{(x)^{\Delta}}$$
. Let $(a,b) \in \theta_{(x,1)}$. Then,

$$(a,b) \in \theta_{(x,1)}$$

$$\Rightarrow a \land x = b \land x$$

$$\Rightarrow (a \land x)^{\circ \circ} = (b \land x)^{\circ \circ}$$

$$\Rightarrow a^{\circ \circ} \land x^{\circ \circ} = b^{\circ \circ} \land x^{\circ \circ}$$

$$\Rightarrow a^{\circ\circ} \wedge x^{\circ\circ} \wedge j = b^{\circ\circ} \wedge x^{\circ\circ} \wedge j.$$

Hence $(a,b) \in \theta_{(x)^{\Delta}}$ implies $\theta_{(x,1)} \subseteq \theta_{(x)^{\Delta}}$. On the other hand, let $(a,b) \in \theta_{(x)^{\Delta}}$. Since $a = a^{\circ \delta} \land (a \lor j)$ and $b = b^{\circ \circ} \land (b \lor i)$, we have

$$(a,b) \in \theta_{(x)^{\Delta}}$$

$$\Rightarrow a^{\circ\circ} \land x^{\circ\circ} \land i = b^{\circ\circ} \land x^{\circ\circ} \land i$$

$$\Rightarrow a^{\circ} \land x^{\circ} \land (a \lor j) \land j = b^{\circ} \land x^{\circ} \land (b \lor j) \land j,$$

by the absorption identity

$$\Rightarrow a^{\circ\circ} \land (a \lor j) \land x^{\circ\circ} \land j = b^{\circ\circ} \land (b \lor j) \land x^{\circ\circ} \land j$$

$$\Rightarrow a \wedge x^{\circ} \wedge j = b \wedge x^{\circ} \wedge j$$

$$\Rightarrow a \wedge x^{\circ} \wedge j \wedge x = b \wedge x^{\circ} \wedge j \wedge x$$

$$\Rightarrow a \land x^{\circ} \land x = b \land x^{\circ} \land x, \text{ as } x < j$$

$$\Rightarrow a \land x = b \land x$$
, as $x < x^{\circ \circ}$.

Thus $(a,b) \in \theta_{(x,1)}$ and hence $\theta_{(x)} \subseteq \theta_{(x,1)}$. Therefore $\theta_{(x,1)} = \theta_{(x)^{\Delta}}.$

We denote the set all of principal j-lattice congruences on a locally bounded K_2 -algebra L by $Con_i^p(L) = \{\theta_{(x)^{\Delta}} : (x)^{\Delta} \in F_i^p(L)\}.$

Theorem 40. Let x and y be any two elements of a locally bounded \underline{K}_2 -algebra L. Then,

(1)
$$x \leq y \Leftrightarrow \theta_{(y)^{\Delta}} \subseteq \theta_{(x)^{\Delta}}$$
.

(2)
$$\theta_{(x)^{\Delta}} \vee \theta_{(y)^{\Delta}} = \theta_{(x \wedge y)^{\Delta}}$$

(2)
$$\theta_{(x)^{\Delta}} \lor \theta_{(y)^{\Delta}} = \theta_{(x \land y)^{\Delta}},$$

(3) $\theta_{(x)^{\Delta}} \cap \theta_{(y)^{\Delta}} = \theta_{(x \lor y)^{\Delta}},$

(4) $Con_i^p(L)$ is a bounded sublattice of $Con_i(L)$.

Proof. (1) Let $x \leq y$. Then $(y)^{\Delta} \subseteq (x)^{\Delta}$, by Theorem 20. This implies that $\theta_{(y)^{\Delta}} \subseteq \theta_{(x)^{\Delta}}$, by Theorem 32 (2). Conversely, let $\theta_{(y)^{\Delta}} \subseteq \theta_{(x)^{\Delta}}$. Then again, by Theorem 32 (2), $(y)^{\Delta} \subseteq (x)^{\Delta}$. This implies that $x \leq y$, by Theorem 20 (4).

(2) For all $\theta_{(x)^{\Delta}}$ and $\theta_{(y)^{\Delta}}$, we have

$$\theta_{(x)^{\Delta}} \lor \theta_{(y)^{\Delta}} = \theta_{(x)^{\Delta} \lor (y)^{\Delta}}$$
, by Theorem 33(1)

$$=\theta_{(x\wedge y)^{\Delta}}$$
 by

Theorem 22 (1).

(3) Similarly, we get

$$\theta_{(x)^{\Delta}} \cap \theta_{(y)^{\Delta}} = \theta_{(x)^{\Delta} \cap (y)^{\Delta}}$$
, by Theorem 33(2)

$$=\theta_{(x\vee y)^{\Delta}}$$
 by Theorem 22 (2).

(4) Clearly, $\theta_{(0)^{\Delta}} = \nabla_L$, $\theta_{(1)^{\Delta}} = \theta_{L^{\vee}}$. From (2), (3), we get $(Con_j^p(L); \vee, \wedge, \theta_{(1)^{\Delta}}, \theta_{(0)^{\Delta}})$ is a bounded sublattice of $Con_j(L)$.

Theorem 41. Let L be a locally bounded \underline{K}_2 -algebra. Then the class $Con_j^p(L)$ of all principal j-lattice congruences forms a Kleene algebra which is isomorphic to $F_i^p(L)$.

Proof. It is clear that $\theta_{(1)^{\Delta}} = \theta_{L^{\vee}}$ and $\theta_{(0)^{\Delta}} = \nabla_{L}$ are the least and greatest elements of $Con_{j}^{p}(L)$. Now, we prove that $Con_{j}^{p}(L)$ is a distributive lattice. Let $\theta_{(x)^{\Delta}}, \theta_{(y)^{\Delta}}, \theta_{(z)^{\Delta}} \!\in\! Con_{j}^{p}(L)$. Then

$$\theta_{(x)^\Delta} \cap \left[\theta_{(y)^\Delta} \vee \theta_{(z)^\Delta}\right] = \theta_{(x)^\Delta} \cap \theta_{(y \wedge z)^\Delta}$$

$$=\theta_{(r\vee(u\wedge z))^{\Delta}}$$
, by Theorem 40

$$=\theta_{(x)^{\Delta}\cap \lceil (y)^{\Delta}\vee (z)^{\Delta}\rceil},$$
 by Theorem 22

$$=\theta_{[(x)^\Delta\cap(y)^\Delta]\vee[(x)^\Delta\cap(z)^\Delta]}, \text{by Theorem 26}$$

$$=\theta_{((x\vee y)\cap(x\vee z))^{\Delta}}$$
, by Theorem 22

$$=\theta_{(x\vee y)^{\Delta}}\vee\theta_{(x\vee z)^{\Delta}}$$
, by Theorem 40

$$= (\theta_{(r)^{\Delta}} \cap \theta_{(u)^{\Delta}}) \vee (\theta_{(r)^{\Delta}} \cap \theta_{(z)^{\Delta}}).$$

Hence $Con_j^p(L)$ is a distributive lattice. We now define an operation * on $Con_j^p(L)$ by $\theta_{(x)^\Delta}^* = \theta_{(x^\circ)^\Delta}$, for all $\theta_{(x)^\Delta} \in Con_j^p(L)$. We have

$$\boldsymbol{\theta}_{(\boldsymbol{x})^{\Delta}}^{**} = \boldsymbol{\theta}_{(\boldsymbol{x}^{\circ \circ})^{\Delta}} = \boldsymbol{\theta}_{(\boldsymbol{x})^{\Delta}}, \boldsymbol{\theta}_{(\mathbf{0})^{\Delta}}^{*} = \boldsymbol{\theta}_{(\mathbf{0}^{\circ})^{\Delta}} = \boldsymbol{\theta}_{(\mathbf{1})^{\Delta}},$$

and

$$(\theta_{(x)^{\Delta}} \cap \theta_{(y)^{\Delta}})^* = \theta^*_{(x \vee y)^{\Delta}}, \text{ by Theorem 37(2)}$$

$$=\theta_{((x\vee y)^{\circ})^{\Delta}}=\theta_{(x^{\circ}\wedge y^{\circ})^{\Delta}}$$

$$=\theta_{(x^{\circ})^{\Delta}} \vee \theta_{(y^{\circ})^{\Delta}}$$
, by Theorem 37(2)

$$=\theta^*_{(x)^{\Delta}}\vee\theta^*_{(y)^{\Delta}}.$$

Also,

$$\theta_{(x)^{\Delta}} \cap \theta_{(x)^{\Delta}}^* = \theta_{(x)^{\Delta}} \cap \theta_{(x^{\circ})^{\Delta}}$$

$$=\theta_{(x\vee x^\circ)^\Delta}$$
, by Theorem 37(3)

$$=\theta_{(x \lor x^{\circ})^{\Delta}} \subseteq \theta_{(y \land y^{\circ})^{\Delta}}$$
, by Theorem 37(1)

$$=\theta_{(y)^{\Delta}}\lor\theta_{(y^{\circ})^{\Delta}}$$
, by Theorem 37(2)

$$=\theta_{(y)^{\Delta}}\vee\theta_{(y)^{\Delta}}^{*}.$$

Then $(Con_j^p(L); \vee, \cap, ^*, \theta_{L^\vee}, \nabla_L)$ is a Kleene algebra. Now, we show that $Con_j^p(L)$ and $F_j^p(L)$ are isomorphic Kleene algebras. Define a map $f: F_j^p(L) \to Con_j^p(L)$ by $f((a)^\Delta) = \theta_{(a)^\Delta}$, for all $(a)^\Delta \in F_j^p(L)$. Then we have

$$f((a)^{\Delta} \lor (b)^{\Delta}) = f((a \land b)^{\Delta})$$
, by Theorem 22(1)

$$=\theta_{(a\wedge b)^{\Delta}}$$

$$=\theta_{(a)^{\Delta}}\vee\theta_{(b)^{\Delta}}$$
, by Theorem 37(2)

$$= f(a) \lor f(b),$$

and

$$f((a)^{\Delta} \cap (b)^{\Delta}) = f((a \lor b)^{\Delta})$$
, by Theorem 22(2)

$$=\theta_{(a\vee b)^{\Delta}}$$

$$=\theta_{(a)} \cap \theta_{(b)}$$
, by Theorem 37(3)

$$= f(a) \wedge f(b)$$
.

Also,

$$(f((a)^{\Delta}))^* = \theta_{(a)^{\Delta}}^* = \theta_{(a^{\circ})^{\Delta}} = f((a^{\circ})^{\Delta}).$$

Then f is a homomorphism. Let $f((a)^{\Delta}) = f((b)^{\Delta})$. Then $\theta_{(a)^{\Delta}} = \theta_{(b)^{\Delta}}$. Implies a = b. Hence f is an injective map. Also, for every $\theta_{(a)^{\Delta}} \in Con_i^P(L)$ we have

 $\theta_{(a)^{\Delta}} = f((a)^{\Delta}), (a)^{\Delta} \in F_j^p(L)$. Then f is a surjective map. Therefore $F_j^p(L)$ and $Con_j^p(L)$ are isomorphic Kleene algebras.

Example 42. Consider the locally bounded \underline{K}_2 -algebra L as in Example 27. The principal j-lattice congruences on L are gives as follows:

$$\theta_{(1)^{\Delta}} = \theta_{L^{\vee}} = \{\{0\}, \{h, b\}, \{a, f.d\}, L^{\vee}\},\$$

$$\theta_{(b)^{\Delta}} = \{\{0, a, f, d\}, \{L^{\vee}, h, b\}\},\$$

$$\theta_{(a)^{\Delta}} = \{\{0, h, b\}, \{L^{\vee}, a, f, d\}\}, \text{and } \theta_{(0)^{\Delta}} = \nabla_L.$$

The lattice $Con_j^p(L)$ is described as in Fig. 4. We observe that $(Con_j^p(L),^*)$ is a Kleene algebra, where

$$\begin{split} \boldsymbol{\theta}_{(1)^{\Delta}}^* &= \boldsymbol{\theta}_{(1^{\circ})^{\Delta}} = \boldsymbol{\theta}_{(0)^{\Delta}}, \boldsymbol{\theta}_{(b)^{\Delta}}^* = \boldsymbol{\theta}_{(b^{\circ})^{\Delta}} = \boldsymbol{\theta}_{(d)^{\Delta}}, \\ \boldsymbol{\theta}_{(d)^{\Delta}}^* &= \boldsymbol{\theta}_{(d^{\circ})^{\Delta}} = \boldsymbol{\theta}_{(b)^{\Delta}}, \text{and } \boldsymbol{\theta}_{(0)^{\Delta}}^* = \boldsymbol{\theta}_{(0^{\circ})^{\Delta}} = \boldsymbol{\theta}_{(1)^{\Delta}} \end{split}$$

It is clear that $F_j^p(L)$ and $Con_j^p(L)$ are isomorphic Kleene algebras under the map $(a)^\Delta \to \theta_{(a)^\Delta}$.

Definition 43. Let θ be a lattice congruence on a locally bounded \underline{K}_2 -algebra L. Then θ is called a congruence on L if

$$(x,y) \in \theta \text{ implies } (x^{\circ},y^{\circ}) \in L.$$

Now, we give the answer to the following question: whether $\theta_{(x)^{\Delta}}$ is a principal j-congruence on L. To answer this question, we need the following:

Fig. 4. $Con_i^P(L)$ is a Kleene algebra.

Definition 44. A Boolean element a is defined as an element of a locally bounded \underline{K}_2 -algebra L, where $a \lor a^\circ = 1$.

Lemma 45. The set $B(L) = \{a \in L^{\circ \circ} : a \lor a^{\circ} = 1\}$ is the greatest Boolean subalgebra of $L^{\circ \circ}$.

Proof. (1) Let $a \in B(L)$. Then we have

$$a^{\circ \circ} = 1 \wedge a^{\circ \circ} = (a \vee a^{\circ}) \wedge a^{\circ \circ}$$

 $= a \lor (a^{\circ} \land a^{\circ \circ})$, by modularity of L with $a^{\circ \circ} > a$

$$= a \vee (a \vee a^{\circ})^{\circ}$$

 $= a \vee 1^{\circ}$

 $=a\vee 0=a$.

Then $a \in L^{\circ \circ}$ and hence $B(L) \subseteq L^{\circ \circ}$. It is clear that $0, 1 \in B(L)$. Let $a, b \in B(L)$. Then $a \lor a^{\circ} = 1$ and $b \lor b^{\circ} = 1$. By distributivity of B(L), we get

$$(a \wedge b) \vee (a \wedge b)^{\circ} = (a \wedge b) \vee (a^{\circ} \vee b^{\circ})$$

$$=(a \lor a^{\circ} \lor b^{\circ}) \land (b \lor a^{\circ} \lor b^{\circ})$$

$$=(1\lor b^\circ)\land (a^\circ\lor 1)=1.$$

Then $a \land b \in B(L)$. Similarly, one can show that $a \lor b \in B(L)$. Therefore B(L) is a bounded sublattice of L° . Let $a \in B(L)$. Then $a^{\circ} \lor a^{\circ} = a^{\circ} \lor a = 1$ and hence $a^{\circ} \in B(L)$. Also, we have $a \land a^{\circ} = a^{\circ} \land a^{\circ} = (a^{\circ} \lor a)^{\circ} = 1^{\circ} = 0$.

Thus $(B(L); \vee, \wedge, ^{\circ}, 0, 1)$ is a Boolean subalgebra of $L^{\circ \circ}$. Now, we show that B(L) is the greatest Boolean subalgebra of $L^{\circ \circ}$. Consider H be another Boolean subalgebra of $L^{\circ \circ}$. Then for all $a \in H$, we have $a \vee a^{\circ} = 1$ and $a \wedge a^{\circ} = 0$. This implies that $a \in B(L)$ and hence $H \subseteq B(L)$. Therefore B(L) is the greatest Boolean subalgebra of $L^{\circ \circ}$.

Theorem 46. Let a be a closed element of a locally bounded \underline{K}_2 -algebra L such that $a \leq j^{\circ \circ}$. Then $\theta_{(a)^{\Delta}}$ is a j-congruence on L if and only if a is a Boolean element of L.

Proof. Let *a* be a Boolean element. Then

$$a \lor a^{\circ} = 1$$
 and $a \land a^{\circ} = a^{\circ} \land a^{\circ \circ} = (a \lor a^{\circ})^{\circ} = 1^{\circ} = 0$.

 $\theta_{(a)^\Delta}$ is a j-lattice congruence on L, by Theorem 37. Now, we prove that $\theta_{(a)^\Delta}$ preserves $^\circ$. Let $(x,y) \in \theta_{(a)^\Delta}$. Then we get

$$(x,y) \in \theta_{(a)^{\Delta}}$$

$$\Rightarrow x^{\circ \circ} \land a^{\circ \circ} \land j = y^{\circ \circ} \land a^{\circ \circ} \land j$$

$$\Rightarrow (x^{\circ \circ} \land a^{\circ \circ} \land j)^{\circ} = (y^{\circ \circ} \land a^{\circ \circ} \land j)^{\circ}$$

$$\Rightarrow x^{\circ} \lor a^{\circ} \lor j^{\circ} = y^{\circ} \lor a^{\circ} \lor j^{\circ}, \text{ as } z^{\circ \circ \circ} = z^{\circ}$$

$$\Rightarrow x^{\circ} \lor a^{\circ} = y^{\circ} \lor a^{\circ}, \text{ as } a^{\circ} \ge j^{\circ}$$

$$\Rightarrow (x^{\circ} \lor a^{\circ}) \land a^{\circ \circ} = (y^{\circ} \lor a^{\circ}) \land a^{\circ \circ}$$

$$\Rightarrow (x^{\circ} \land a^{\circ \circ}) \lor (a^{\circ} \land a^{\circ \circ}) = (y^{\circ} \land a^{\circ \circ}) \lor (a^{\circ} \land a^{\circ \circ}),$$
by distributivity of $L^{\circ \circ}$

$$\Rightarrow x^{\circ} \land a^{\circ \circ} = y^{\circ} \land a^{\circ \circ}, \text{ as } a^{\circ} \land a^{\circ \circ} = 0$$

$$\Rightarrow x^{\circ} \wedge a^{\circ \circ} \wedge j = y^{\circ} \wedge a^{\circ \circ} \wedge j.$$

Hence $(x^\circ,y^\circ)\in\theta_{(a)^\Delta}$. Therefore $\theta_{(a)^\Delta}$ is a j-congruence on L. Conversely, let $\theta_{(a)^\Delta}$ be a j-congruence on L and $a\leq j^{\circ\circ}$. Then $Co\ker\theta_{(a)^\Delta}=(a)^\Delta$. Thus $(a,1)\!\in\!\theta_{(a)^\Delta}$ and hence $(a^\circ,1^\circ)\!\in\!\theta_{(a)^\Delta}$. We get

$$(a^{\circ},0) \in \theta_{(a)^{\Delta}}$$

$$\Rightarrow a^{\circ\circ\circ} \wedge a^{\circ\circ} \wedge j = 0^{\circ\circ} \wedge a^{\circ\circ} \wedge j$$

$$\Rightarrow a^{\circ} \wedge a^{\circ\circ} \wedge j = 0, \text{ as } a^{\circ} = a^{\circ\circ\circ\circ}$$

$$\Rightarrow a^{\circ} \wedge a \wedge j = 0, \text{ as } a^{\circ\circ} = a$$

$$\Rightarrow (a^{\circ} \wedge a \wedge j)^{\circ} = 0^{\circ}$$

$$\Rightarrow a^{\circ\circ} \vee a^{\circ} \vee j^{\circ} = 1$$

$$\Rightarrow a^{\circ\circ} \vee a^{\circ} = 1, \text{ as } a^{\circ} \geq j^{\circ}$$

$$\Rightarrow a \vee a^{\circ} = 1, \text{ as } a^{\circ\circ} = a.$$

Therefore a is a Boolean element of L.

Example 47. Consider the locally bounded \underline{K}_2 -algebra L which is represented in Example 27. The set $B(L) = \{0,b,d,1\}$ contains all the closed elements of L. Now, 0,b are Boolean elements of L such that $0,b \leq j^{\circ \circ} = c$. So $\theta_{(0)^{\Delta}} = \nabla_L$ and $\theta_{(b)^{\Delta}} = \{\{0,a,f,d\},\{L^{\vee},h,b\}\}$ are j-congruences on L. But $d,1 \in B(L)$ and $d,1 \leq /j^{\circ \circ}$. So $\theta_{(d)^{\Delta}} = \{\{0,h,b\},\{L^{\vee},a,f,d\}\}$ and $\theta_{(1)^{\Delta}} = \{\{0\},\{h,b\},\{a,f.d\},L^{\vee}\}$ are not preserve the unary operation s. Hence $\theta_{(1)^{\Delta}}$ and $\theta_{(d)^{\Delta}}$ are not j-congruences on L.

Ethics information

This paper did not involve any experiments on humans or animals, and therefore no ethical approval was required.

Funding

This research received no external funding.

Authors' contributions

All authors contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Conflicts of interest

There are no conflicts of interest.

Acknowledgments

The authors would like to thank the editor and the referees for their voluble comments that improved that persecution.

References

- [1] Blyth TS, Varlet JC. On a common abstraction of De Morgan algebras and Stone algebras. Proc Roy Edinburgh 1983;94: 301–8.
- [2] Blyth TS, Varlet JC. Subvarieties of the class of MS-algebras. Proc Roy Edinburgh 1983;95:157–69.
- [3] Blyth TS, Varlet JC. Sur la construction de certaines MS-algébres. Portugaliea Math 1980;39:489–96.
- [4] Blyth TS, Varlet JC. Corrigendum sur la construction de certaines MS-algébres. Portugaliea Math 1983-1984;24:469–71.
- [5] El-Assar S, Badawy A. Homomorphisms and subalgebras of MS-algebras. Quter Univ Sci J 1995;15:279–89.
- [6] Badawy A, El-Fawal R. Homomorphism and subalgebras of decomposable MS-algebras. J Egypt Math Soc 2017;25:119—24.
- [7] Badawy A. Extensions of the gilvenko-type congruences on a stone lattice. Math Methods Appl Sci. 2018;41:5719–32.
- [8] Sevčovič D. Free non-distributive Morgan-Stone algebras.
- New Zealand J Math 1996;25:85—94.
 [9] Badawy A. On a certain triple construction of *GMS*-algebras. Appl Math Inf Sci Lett 2015;3:115—21.
- [10] Badawy A. On a construction of modular GMS-algebras. Acta Univ Palacki Olomuc Fac rer nat Mathematica 2015;54:19–31.1.
- [11] Badawy A. dL-Filters of principal MS-algebras. J Egypt Math Soc 2016;24:160–4.
- [12] Badawy A, El-Fawal R. Closure filters of decomposable MSalgebras. Southeast Asian Bull Math. 2020;44:177–94.
- [13] Badawy A. Filters of p-algebras with respect to a closure operator. Southeast Asian Bull Math 2016;40:37–47.
- [14] Badawy A. Congruences and de Morgan filters of decomposable MS-algebras. Southeast Asian Bull Math 2019;43:13—25.
- [15] El Fawal R, Badawy A, Hassanein A. On Congruences of certian modular generalized MS-algebras. Neuro Quantology 2022;16:1448–64.
- [16] Blyth TS. Lattices and Ordered Algebraic Structures. London: Springer; 2005.
- [17] Blyth TS, Varlet JC. Ockham Algebras. Oxford: Oxford University Press; 1994.
- [18] Gratzer G. Lattice Theory, First Concepts and Distributive Lattices. San Francisco, California: Freeman; 1971.
- [19] Badawy A. Characterization of congruence lattices of principal *p*-algebras. Math Slovaca 2017;67:803—10.
- [20] Badawy A, Ahmed M, EL-Seidy E, Gaber A. On congruences of principal of GK2-algebras. Inf Sci Lett 2023;12:2623–32.
- [21] Badawy A, Atallah M. Bollean filters of principal p -algebras. Int J Math Comput 2015;26:15—25.
- [22] Badawy A, Shum KP. Congruences and Boolean filters of quasi-modular p-algebras. Discuss Math Gen Algebra Appl 2014;34:109–23.
- [23] Badawy A. Congruences and d-Filters of principal p-algebras. J Egypt Math Soc 2015;23:463-9.