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Abstract

In this paper, we introduce and characterize the notions of j-filters and principal j-filters of a locally bounded
K,-algebra L with LY = [j). Many properties of j-filters of a locally bounded K, algebra L are investigated, and a set of
equivalent conditions for a filter F to be a j-filter is given. Also, we show that the class F;(L) of all j-filters of L forms a
bounded modular lattice. We obtain many interesting properties of the principal j-filters of a locally bounded Kj,-algebra
L. Moreover, a characterization of a j-filter of a locally bounded K,-algebra L is given in terms of principal j-filters of L.
We establish and characterize the lattice Con;(L) of all j-lattice congruences of a locally bounded K;-algebra L via j-filters
and the lattice Con]’.’ (L) of all principal j-lattice congruences via principal j-filters of L. Finally, we prove that the principal
j-lattice congruence 0,2, xEL is a { ° }-congruence on L if and only if x is a Boolean element of L such that x <j"*.

Keywords: K>-algebras, K;-algebras, Congruences, Filters, Lattice congruences, Modular GMS-algebras, GMS-algebras,
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1. Introduction

he class MS of all MS-algebras, which is a

generalization of the class M of all de Morgan
algebras and the class S of all Stone algebras, was
introduced by Blyth and Varlet [1]. The subvarieties
of the class MS were characterized by Blyth and
Varlet in Ref. [2]. Additionally, Blyth and Varlet [3,4]
constructed MS-algebras from the subclass K, by
using quadruples. More basic properties of MS-al-
gebras are considered in Refs. [5—7]. The class GMS
of all generalized MS-algebras was investigated by
Sevéovic [8]. Later, Badawy [9] introduced and
constructed the principal generalized K;-algebras
(briefly principal GK;-algebras) from generalized
Kleene algebras and bounded lattices using triples.
Also, Badawy [10] constructed K,-algebras from
Kleene algebras and modular lattices by means of
K;-quadruples. He characterized the isomorphism
of K,-algebras in terms of K,-quadruples.

In [11], the author studied the d;-filters of a prin-
cipal MS-algebras, that properly each d;-filter of
L contains the dense filter D(L) = d, but in a locally
bounded K,-algebra L with LY=[j) each j-filter
contains LY, where D(L)CLY, so every j-filter is a
dp -filter but the converse is not true.

Many properties of filters are studied in p-alge-
bras and MS-algebras are given in Refs. [12—14].

El Fawal et al. [15] introduced and characterized
K,-congruence pairs of modular generalized
MS-algebras from the class K, of all K,-algebras.

In this paper, we introduce the concept of j-filters
of a locally bounded K,-algebra L with LY = [j). We
show that the set F;j(L) of all j-filters of a locally
bounded K,-algebra L forms a bounded modular
lattice. We introduce the notion of principal j-filters
of L and investigate the basic properties of such
filters . Also, we prove that Ff (L) of all principal

j-filters of L forms a Kleene algebra and it is a
bounded sublattice of F;(L). Moreover, we study the
relationship between the relation ¥, where
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(x,y) Eyex’ =y,

and the principal j-filters of L. Further, we charac-
terize the lattice Con;(L) of all j-lattice congruences
of a locally bounded K,-algebra L via j-filters and
the lattice Con}” (L) of all principal j-lattice congruenc
via principal j-filters of L. Finally, we prove that the
principal j-lattice congruence 6. is a congruence
(that preserving V,A,°) on L ié and only if x is a
Boolean element of L such that x <j°°.

2. Preliminaries

This section contains several definitions and
important results that are essential to this work and
are mostly considered in Refs. [10—12].

Definition 1. [16] A filter F is a nonempty subset of L,
that satisfies the conditions:

(1) x,y €F implies xAy €F,
(2)Ifx>y,yeF and x€L, then xF

A filter [A) generated by a subset A of a lattice L is
defined as follows:

[A) = {x €L : x > a1 AmA...Aay, for some a; €EA,i = 1,
2,..,n}

If A= {a}, we write [a) instead of [{a}) and
[@a)={x€L:x>a} is called a principal filter
generated by a.

The lattice (F(L); A, V) of all filters of a lattice L is a
distributive (modular) if and only if the lattice L is
distributive (modular), where

Fl/\FzzFlan and
P1VF2 = {x eL: fo]/\fz,fOI' somef1 S Fl,fz S Pz}

Now, we recall the definitions of MS-algebras,
K,-algebras, de Morgan algebras, and stone alge-
bras from Ref. [17].

An MS-algebra (L;V,A,",0,1) is an algebra with
type (2,2,1,0,0), where (L;V, A,0,1) is a distributive
lattice and the unary operation ~ satisfies the
following:

x<x", (xAy) =x"vy°,1° =0.

An MS-algebra together with the identity x = x°°
is a de Morgan algebra.
A Kleene algebra is a de Morgan algebra which
satisfies this identity

(A )V(yvy") =yvy©.
An MS-algebra that satisfies the following two
identities is a Kj-algebra:

XAx” =x" A", (xAxT)V(yvy©) =yvy©.

An MS-algebra is called a Stone algebra if it
satisfies the identity xAx° = 0 and is called a Boolean
algebra if it satisfies this identity xvx® = 1.

A generalized de Morgan algebra (L;V,A,7,0,1) (or
GM-algebra) is a bounded lattice (L;V,A,0,1) with
the unary operation ~ satisfies the identities:

x=x,(xAy) =xvyand 1= 0.

A generalized MS-algebra (simply GMS-algebra)
is an algebra (L;V,A,,0,1), where (L;V,A,0,1) is a
bounded lattice and the unary operation ~ satisfies
the identities:

x<x"",(xAy)" =x"vy and1® =0.

We observe that a modular GMS-algebra L is a
GMS-algebra, that is (L;V,A,0,1) is a modular lat-
tice. The class GMS contains the classes GM and S of
all modular S-algebras. Moreover, the class MS is a
proper subclass of the class GMS of all
GMS-algebras.

Theorem 2. [8] For any two elements a,b of a
GMS-algebra L, we have

(1)0° =1,
2)a<b=b<a’,
(3)aooo :ao7

4) (avb)" =a°ab°,
(5) (anb)”® =a°"aAb°",
6) (avb)"” =a°°vb°".

An element a of a GMS-algebra L is called a closed
element of L if a =a°. The set L°° of all closed
elements of L is defined by L°** ={a €L:a=a""}.
It is known that (L°°;V,A,”,0,1) is a GM-algebra.
The element d€L is called a dense element of L if
d =0.

The class of all K,-algebras was presented by
Badawy [10], as a common abstract of Kleene alge-
bras and modular S-algebras (modular p-algebras
that satisfy the stone identity x°vx°° = 1) as follows:

Definition 3. [10] A K,-algebra L is a modular
GMS-algebra such that L°° is a distributive lattice and L
satisfies the following:
XA =x"Ax"", xAx” <yvy©.

We will denote by K, for the class of all K,-al-

gebras. It is clear that K, contains the classes K3, S,
M,K,B and S.

Theorem 4. [10] Let L be a K,-algebra . Then we have
(1) x =x"°A(xvx®), for all x€L,

(2) L** ={xeL:x=x""} is a Kleene algebra,
B) LV={xeL:xvx'}={x€L:x>x"}is afilter of L,
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@Lr={xel:xamx"}={x&€L:x<x"} is an

ideal of L,
(5) D(L) = {x €L : x*= 0} is a filter of L and D(L)C
LY.

Remark 5. In a Ky-algebra L, the condition xAx® < yv
y°, where xAx® €L" and yvy° €LY means that a < z for
every a€L” and z€L.

Definition 6. [18] On a lattice L, the lattice congruence ¢
is an equivalence relation with the following condition:

if (a,b)€b, (c,d)€b
bad) €6.

imply (ave, bvd)€0, (anc,

Theorem 7. [16] The smallest lattice congruence 6y
on a lattice L that identifies x and y is called a principal
lattice congruence on L and is defined by

(a,b) € Ox,) < arxAy = bAxAy and avxvy = bvavy.
It is clear that,

(a,b) € 01y arx =DbAx.

Definition 8. [18] For any lattice congruence § on a
bounded lattice L, the Cokernel of ¢ (briefly Cokerf) is
the set {x €L : (x,1) €6}, which forms a filter of L.

Lemma 9. [15] Let L be a K,-algebra with LY = [f). Then
we have

(1) x =x°°A(xvj), for all xEL,
(2) (anb)Vj = (avj)A(bVj), for all a,bEL’",
(3) (xAy)vd = (xVvj)A(yVj), for all x,yEL.

A lattice congruence 0 is called a congruence on a
K,-algebra L if (a,b) €6 implies (a°,b°)€6. For any
K,-algebra L, we denote by Con(L) the lattice of all
congruences of L and by Cony,(L) the lattice of all
lattice congruences of L. Additionally, we use Ay, and
V1, respectively , to indicate the identity congruence
{(a,a) : a €L} and the universal congruence L x L on
L.

Throughout the paper, we consider LY = [j) to be the
principal filter of a locally bounded K,-algebra L
that is generated by j.

For more information for filters, congruences on
lattices and MS-algebras, see the references [19—23].

3. Characterization of j-filters of locally
bounded K,-algebras

In this section, the notion of j-filters of a locally
bounded K,-algebra L is presented. Many proper-
ties of j-filters will be investigated.

At first, we introduce the definition of locally
bounded K,-algebras.

Definition 10. A K,-algebra L is called a locally
bounded if LV is a principal filter of L, that is, there exists
jE€L such that LY = [j).

Definition 11. A filter F of a locally bounded K,-algebra
L with LY = [j) is called a j-filter of L if jEF.

Example 12. Consider the algebra (L;V,A,”,0,1) in
Fig. 1.
We observe that L is a locally bounded K,-algebra
with
LV = [7) = {17 bvxayazvdvj}~

It is clear that L and LY are the largest and
smallest j-filters of L, respectively. Since j does not
belong to each of the filters [d), [x), [y), [z), [b) and [1),
then these filters are not j-filters of L.

Definition 13. Let A be a nonempty subset of a locally
bounded
K,-algebra L with LY = [j). Define A% as follows:

A*={yEL:y” >a""njforsomea A}

Lemma 14. Let L be a locally bounded K,-algebra. Let A
be a nonempty subset of L which is closed with respect to
A. Then A® is a j-filter of L containing A.

Fig. 1. L is a locally bounded K,— algebra with LV = [j).
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Proof. Clearly, 1€A*. Let x,y€A®. Then x°°
and y°° > a3° Aj, for some a1,a, EA. Hence

>ai° N,

(xAy)" =x"" Ay = (" Af) A (3" Af) = (a77 Aay")
N =(mAaz) " Aj.

Since ajAa; €A, then xAyEA2. Now, let ye A*
and let z > y,z€L. Then y°° > a°°Aj, for some a&
A.Thusz’® >y°° > a’°Aj, for some a€A. Therefore
z€A® and hence A® is a filter of L. Since jr>j>
a°Aj, for all a€A, then jeA®. Therefore A® is a
j-filter. Let x€A. Since x°° > x°°Aj, then x& A%
Thus ACA®. Then A? is a j-filter of L containing A.
This lemma gives the fundamental properties of A*.

Lemma 15. Let A and B be two nonempty subsets of a
locally bounded K,-algebra L, which are closed under A.
Then we have

(1) [A )CAA and LYCA®,
(2) A* = [A)VLY,

(3) ACB=AACB?,

(4) AAA AA

() [A)A = A%

Proof. (1) Let x €[A). Then
X> aAA.. A, forsome a; €A i=1,2,...,n

Thus x°° >a;° Aa;°A. . .Aa,° > (BAd2A.Ady) " A
Then x€A® as ajAaA..Aa,EA. Hence [A)CA2.
Now, let x €LY = [j).

Then x > j. This implies that x°°
some aEA.

Therefore x€A” and hence LYCA".

(2) Let y€A®. Then y°° >a°°Aj for some a€ A.
Since y = y°°A(yVj), then

>x>j>a" A for

y = (" N)AYVI)
=a""AGAWV))

=a’" Aj, by the absorption identity

>an.
This gives that )V[/) C[A)VLY. Hence
AR CIA)VLY. Conversely, from (1), [A)VLYCA”.

Therefore A* = [A)VLY.

(3) Let yeA® and ACB. Then y°° > a°° Aj, for some
a€ACB. Thus a€B and hence yeB®. Then A*C B2,
(4)A* = {y€L:y°° >a""Aj,for some a €A}

={yE€L:y”" >a’"Aj,forsomea € ACA*} by
Lemma 14

=AM,

(5) From (2), (3) and (4), we get [A)A CA®® = A2,
Conversely, since AC[A), then again by (3), we get
ARC[A)A. Therefore [A)A = A,

Now, the following Theorem presents a character-
ization of a j-filter of a locally bounded K,-algebra L.

Theorem 16. Let L be a locally bounded K,-algebra and
F be a filter of L.
Then F is a j-filter of L if and only if F = F~.

Proof. Clearly, jEF, as F is a j-filter of L. Then By
Lemma 13, we have FCF®. Now, let x€F*. Then
x°° > f°°Aj, for some f EF. Since

x=x""Axvj) > (f N)A(xvj) =f A EF,

where f°°,j€F. Then FACF and hence F=F~.

Conversely, let F = F*. Since jeF* =F, then F is a
j-filter.
Let Fj(L) = {F® : F €F(L)} = {F : Fis a j-filter of L} be

the set of all j-filters of L.

Theorem 17. Let F and G be filters of a locally bounded
K,-algebra L. Then,

(1) (FVvG)® = FAVGA,

() (FnG)* = FAnG?,

(3) F;(L) is a modular {1}-sublattice of F(L) and a
bounded modular lattice on its own.

Proof. (1) Since F, GCFVG, then F*, GAC(FVG)®, by
Lemma 15 (3). Thus the upper bound of FA and G*
s (FVG)®. Consider H® as another upper bound of
F? and G®, where H is a filter of L. Then F*, GARCHA.
Since F,GCF?,G*, then F,GCH". Hence FVGCHA.
Then by Lemma 15 (3) and (4), (FVG)*CH** = H2.
Therefore (FVG)® is the least upper bound of F*, G*
and hence (FVG)® = FAVGA.

(2) We can also show that (FNG)*
applying a similar method.

(3) From (1) and (2), we obtain that F;(L) is a
{1}-sublattice of F(L), as LEF;(L). Since F(L) is a
modular lattice, then F;(L) is also a modular lattice.
It is clear that L,LY are the largest and smallest
members of F;(L), respectively. Then (F;(L),V,A,L",
L) is a bounded modular lattice on its own.

The following Theorem represents another charac-
terization of a j-filter of alocally bounded K,-algebra L.

=F*nG* by

Theorem 18. Let F be a proper filter of a locally boun-
ded K,-algebra L. Then we have the -equivalent
conditions

(1) F is a j-filter,
(2) xvjE€F, for all x€L,
(3) LVCF.
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Proof. (1)=(2): Let F be a j-filter of L. Then j& F.
Since xvj > jEF, for all x€L, then xVjEF.
(2)=(3): Let x€L". Then x > j€LY. Thus we have
x =xVjE€F, by (2). Then x€F and hence LYC F.
(3)=(1): Since jELYCF, then F is a j-filter of L.

4. Principal j-filters of locally bounded
K,-algebras

In this section, we define and characterize the
principal j-filters of a locally bounded K,-algebra L.
Then we investigate the basic properties of such

filters.
For any element x of a locally bounded K,-algebra

L with LY = [j), we write (x)* instead of ({x})*. We
observe that (x)* = {y €L :y°° > x"°Aj}.

It is clear that (1)* =LY and (0)* =L are the
smallest and largest j-filters of L, respectively.
Lemma 19. Let L be a locally bounded K,-algebra. Then
(x)* is a principal j-filter containing x, precisely (x)* =
[x°°Aj) = [x°°)VLY.

Proof. According to Lemma 14, (x)* is a j-filter of L
= [x°°Aj). Let
. Then y°° > x°° Aj. Thus we have

containing x. Now, we show that (x)*
yE@)*

Y=y AYVj) = X NAYV)) = X" Aj, as AV
Hence y&[x*°Aj). Therefore (x)*

Conversely, let

y €[x°°Aj). Then y°° >y > x°° Aj implies y& (x)*.

Thus [x°°Aj) C(x)*. Consequently, (x)* = [x°° Af).

j) =
Q[x /\])

Theorem 20. Let x and y be two elements of a locally
bounded K,-algebra L. Then,

1) [x) S(x)*,

@) ()" = (x**)",

G2 =y
true,

@ x < yo(y)*c)?,

6G) xe(y) e cy)”

Proof. (1) Let y €[x). Then y >x implies y°° >
x°° > x°° Aj. Therefore y& (x)* and hence [x) C(x)".
(2) Using the fact that x°°°° =x°°, we get

(xoo)A:{yeL: yeo eroao/\j}

={yeLl:y” >x"A}

= (x)* = (y)* but the converse is not

°°. Then,

(x)*={a€L:a"">x"Aj}
={a€L:a’ >y A}

=(y)".

In Example 12, = ()"
converse is not true

(4) Let x <y. Then x** <y°° and x°°Aj <y°°Aj. Let
ac(y)®. Then a°~ >y°°Af > x°°Aj. Hence ae(x)™.
Thus (y)*C(x)*.
Conversely, let (y)*C(x)

=[j) but 1°°#j°°. So the

2 Then,

A

yE ) ™.
Sy A

=y=y Ay = NAYV))

=y > x""Aj, by the absorption identity

=Yy>x""N > xAj,asx"" > x.

We claim that x <. If j < x, then (x)* is a proper
subset of (j)* = LY, which is a contradiction as L" is
the smallset j-filter of L. Therefore x <y.

(5) Let a€ (x)* and x&(y)*. Then a°° > x°°Aj and
x°° >y°° Aj. Tt follows that a°* > y°°Aj. Then a € (y)*
and hence (x)*C(y)®. Conversely, let (x)*C(y)".

Then by Lemma 19, x€ (x)*C(y)*.

Theorem 21. Let L be a locally bounded K,-algebra.

Then (x)* represents every principal j-filter of L, for
some xEL.
Proof. Let F= [x) be a principal j-filter of L. Let

y €[x). Then y > x implies y°° > x°°
y< (x)*. Hence FC(x)*. Conversely, let y (x)*. Then
y>x"°Aj > xAj. Hence y €[x)VLY = [x), as LY = [j) is
the smallest j-filter of L. Then y €[x). Therefore
(x)* C[x). Then every principal j-filter [x) can be
expressed as (x)°.

The set of all principal j-filters of L is denote by
F/(L) = {(x)" :x €L}.

> x°°Aj. Thus

Theorem 22. Let x and y be two elements of a locally
bounded K,-algebra L. Then,

(1) (xny) = (x) "V (y)*,

@ (xvy)® = (¥)*ny )A
3) Fp (L) is a bounded sublattice of Fj(L).



R. Abd El-Mawgoud El-Fawal et al. / Al-Azhar Bulletin of Science 35 (2024) 68—81 73

Proof. (1) Let x,y€L. Then,
(xAy)* = [(xAy) " A))

= Ay A

= (" A)AE " A)
=AY A

= @) v()"

(2) Since x,y < xvy, then by Theorem 20, (xvy)*C
(®)%, (y)®. Thus (vvy)*C(x)*n(y)*. Conversely, let
ac(x)*n(y)*. Then a°° >x°"°Aj and a°° >y°°Aj.
Hence,

a’t > (X NIV A) = (xvy) A

Then a< (xvy)®. Thus (x)*N(y)*C(xvy)?.
Therefore (xvy)* = (x)*n(y)".
(3) We observe that (0)* =L and (1)* = LY are the
greatest and smallest principal j-filters of L,
respectively. Then by (1) and (2), (FJP(L); V,A,LY,L)
is a bounded sublattice of F;(L).
The following lemma shows that the element j is a
distributive element of a locally bounded K,-algebra
L, which is a useful property.

Lemma 23. Let L be a locally bounded K,-algebra. Then

(1) (avb)Aj = (anj)V(bA)), for all a,beL"",
(2) (xvy)Af = (xAf)V(yA)), for all x,yEL.

Proof. (1) Let a,b€L°°. Then a’°° =a,b°° =b and
hence
(avb)®" = avb. Using Theorem 22 (2), we have

(avb)* = (a)"n(b)",
=[(avb)"" Aj) =[a"" Aj) N [b"" A))
= [(avb)Aj) = [(anj) Vv (bA))

).
Then (avb)Aj = (anj)V(bA)).
(2) Since x = x*°A(xV)),y = y°"A(yVj), then we get

@A)V (yAj) = (" AV AWV AT)
= (x""Aj)V(y"° Aj), by the absorption identity

= (" vy )N, by (1)

oo

=(xvy) A

oo

= (xvy) " A((xvy)Vj)Aj,asj < (xvy)Vj

oo

={(xvy) " A((xvy)Vj)Ini

oo

= (xvy)Aj,where xvy = (xvy) " A((xVy)V)).

Therefore j is a distributive element of L.

Lemma 24. Let L be a locally bounded K,-algebra.
Then,

(1) (x)* = LVexelY,
@) ()* = p)exel?,
B)(x)* =Lex =0

Proof. (1) Let (x)* = LV. Then [x°°Af) = [j). Implies
XN =]
Then x°° > j and hence x°° €[j)=L". Now, x°° €LY,
xvjE€LY imply
x = x"°A(xvj) ELY. Conversely, let x €LY = [j). Then
x°° >x>j. Thus
()" =[x A))
=[j)=L",asj<x"".

(2) Let (x)A = [x). Since x = x °A(xvx°), then,
()" =) =" A) =)
=x"N=x
=x""AA(VX") =xA(xVx")
= xAj =x,by the absorption identity.

Thus x <j and hence x&€L". Conversely, at first
we need to prove that L"CL°°. Let x&L". Then
xAx® = x. Implies (xAx®)"" = x°°. Therefore,
x=xAx" =x""Ax"°° =x°°. Thenx =x"°€L°°. Now,

()" =[x )
= [xA))

=[x),as x <j,by Remark 5.

(3) Let x=0. Then x*°=0 and (x)*=
[x°°Aj)=[0)=L. Conversely, let (x)* =L. Then
[x*°Aj)=L=[0) implies x°°Aj = 0. Since j#0, then

x°° =0. Thus x = 0.
Now, we give a characterization of a j-filter of a locally
bounded K,-algebra L via principal j-filters of L.

Theorem 25. Let F be a filter of a locally bounded
Ky-algebra L. Then F is a j-filter of L if and only if
F= u(x)"

x€F
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Proof. Let F be a j-filter and y€F. Since y°° > y°° Aj,
then

yeW)*c U ()*

A
hand, let yeng(x)

Thus FC UF(x)A. On the other
xe

. Then y€(2)® for some z€ F.

Hence y°° > z°° Aj€F. This implies that

Y=y Ay 227 AAGY))

y>z"° AjEF, by the absorption identity.
Then y&F. Therefore U (x)*CF and hence

F
F= u @@ <
x€F
Conversely, since j& (x)*C UF(x)A =F, then Fis a
xe

j-filter of L.

Theorem 26. The class Fp (L) of all principal j-filters of
a locally bounded KZ-ulgebm L forms a Kleene algebra.

Proof. By Theorem 22 (3), (F/(L);V,A,L",L) is a
bounded lattice. Now, we show that Fp (L) is a

distributive lattice. Let (x)*, (y)*, (z)* EF]’? (L). Then,

=[x""A)n[(yr2)" " A))

=[(x""Af)V((yAz)""Af))

= [(x**V(yAz)"*)Aj), by Lemma 23

= [(x** vy )A(x " vz"")Af), by distributivity of L**
= [(evy) " AVI(xv2) " )

= (xvy)*v(xvz)*

=[(0)*n(y)*v[(x)* n(2)*], by Theorem 22 (2).

Hence 1-"]’.j (L) is a distributive lattice. To show that
F]’-7 (L) is a Kleene algebra, define a unary operation ~
on F/(L) by (x)* = (x*)*, for all (x)*€F/(L). Then
we have

(@) =) =) (1) =(1)"=(0)",
and (x)*n(y)* = (xvy)*, by
Theorem 22(2)
=((xvy)")*
— (" ay")

=(x")*v(y°)*, by Theorem 22(1)

=@ v(y)"

Since yAy® < xvx°, then we have
®*n@)°* = @)*n@)*

= (xvx°)*C(yay")*, by Theorem 20(4)

= (y)AV(y° )A,by Theorem 22(1)

=) vy

Hence (FP(L) V,A,7,LY,L) is a Kleene algebra.
Now, we construct an example to clarify the above
results.

Example 27. Consider the locally bounded K,-algebra L
as in Fig. 2.

We observe that LY = [j) =
{0,a,b,c,d,1}.

A description of the lattice F/ (L) is given in Fig. 3.
It is clear that (F]’-7 (L),”) is a Kleene algebra.

{1,x,y,z,e,c,j} and L°° =

Fig. 2. L is a locally bounded K,— algebra.

(12 = (0)2

()2 = ‘-"ﬂo (B)A=T)E

5 = (1)
EP (1)

Fig. 3. Ff (L) is a Kleene algebra.
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Define a relation ¥ on a locally bounded K,-algebra
L by:

ox’ =y,

(x’y) elp@xoo :ycu

Theorem 28. Let L be a locally bounded K,-algebra.
Then we have

(1) y is a congruence relation on L,

(2) [x], = [x"*],, where [x], ={a€L:a""=x""} is
the congruence class of an element x of L,

() x** = max [x],,

@) [1], = D(L), [0], = {0},

(5) L/y is a Kleene algebra,

(6) L°°=L/y.

Proof. (1) Clearly y is an equivalence relation on L.
Let (a,b),(c,d)€y. Then a°° =b°° and ¢°° = d°°.
Thus we have

(ave)”" =a""vc*”
EPRRE
—(bvd)",

and

(anc)”" =a’"Ac**
EPRTE

=(bad)"".

Then (avc,bvd), (anc,bad)Ey. Therefore ¢ is a
lattice congruence on L. Let (x,y)€y. Thenx*® =y°°
implies x*°* =y°°°. Thus (x°,y°) €y, and hence  is
a congruence relation on L.

(2) Since [x], ={a €L: a’* =x""}, then

[x”]w:{aEL:u” SEPURLE :x“}:[x]w

(3) Letac(x],. Thena <a>* =x"°, foralla€ [x]
Thus x°° = max [x],.
(4) Clearly, [1], ={a€Ll:a">=1""=1} = D(L) and

v

0], ={a€L:a"=0"" =0} ={0}.

(5) Consider the quotient set L/y = {[x], : x €L}.
It is known that
(L /¥;V,A,[0],,[1],) is a bounded lattice, where

[y vyl = vyl

[y Alyl, = xAyl,,
Define a unary operation B on L/y by [x}; =[x°],,
for every [x], €L/y. Then we have

(W, ALyl )" = Ayl

=[(eAy)l,

Also,

], ALy = AT, Clyvy T =[], VIl

Therefore (L /y;") is a Kleene algebra.
(6) Define amap f : L°° —L/y by f(a) = [a],, for all
acLl".
One can show that f is a (0,1) lattice homomor-
phism. Since

then f is a homomorphism. To show that f is an
injective map, let f(a) = f(b). Then [a], = [b], im-
plies a°°* =b°°. Thus a="b, as a,b€L’°. For every
[al,€L/y we have [a],=[a""], =f(a""),a’  EL"".
Then f is a surjective map and hence f is an
isomorphism of the Kleene algebras L°° and L/vy.

Lemma 29. Let x and y be any two elements of a locally
bounded K,-algebra L. Then,

L 1, = y,=m" ="

@) [[x]y) = {y eL:y> > x°},

(3) [[x]y) €(x)*,

@ [[x],) =LY, if x&(LY — D(L)),
(5) [[x],) is not a j-filter, if x€D(L).

Proof. (1) Let [x], = [y],. Then x** =y°°. Then by
Theorem 20 (3), we get (x)* = (y)*.
(2) Since [x], ={a €L:a’* =x""}, then

[, ={y €L:y>armA...Aay, a; € [x],,i=1,...,n}
={yEL:y” >(mAaA..A1,) "}
:.{y e L:yee zxee}’asu;e :“.:u:lo :xoa

(3) Lety €[[x],). Then y°* > x°* > x°°Aj implies

Y=y AYVi) = (T A)AWV) = XA

Hence y €[x"°Aj) = (x)*. Therefore [[x],) C(x)".
(4) Let x& (LY —D(L)). Then x€LY and x&D(L).
Now, we have
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(W) ={yeLl:y">x"}
={yeLl:y>>x"">x>j},asx€L’
={yeL:y=y"AyVvj) 2jAyVj) =j}

={yelyzji=l=L"
(5) Let x€D(L). Then x° =0 and

[W,)={yeLl:y">x"}
={yel:y”>1}
—{yeLiy=1)

=D(L).
Since j&D(L), then [[x],) is not a j-filter of L.

5. j-lattice congruences of a locally bounded
K,-algebra
In this section, we investigate the relationship

between the lattice congruence relations and the
j-filters of a locally bounded K,-algebra L.

Definition 30. A lattice congruence ¢ on a locally
bounded K,-algebra L is called a j-lattice congru-
ence on L if € Coker 6.

Lemma 31. Let 6 be a j-lattice congruence on L. Then
Coker 0 is a j-filter of L.

Define a binary relation 6; on a locally bounded
K,-algebra L by:

(x,y) € 0;<=xAj =yAj,wherex,yEL.
Theorem 32. Let L be a locally bounded K,-algebra.
Then we have
(1) 6; is a j-lattice congruence with Co ker 6; =LY,
(2) [x],. = [x°°],, where [x], is the congruence
] ] 7
class of x modulo ¢;,

(3) L/0; is a Kleene algebra .

Proof. (1) Clearly, ¢; is a lattice congruence. Now,
we prove that Co ker 0; = L".

Cokerfj={xeL:(x,1) €}
={x € L:xAj=1Aj}

={xeL:xAnj=j}

={xel:x>j}

—fj)=L".

(2) Since x = x°° A(xVj), then xAj = x°° A(xV)) Aj =
x°°Aj. This implies (x,x°°)E6; and hence [x], =
[x° 0]0]"
(3) It is observed that L/6; = {[x}(,j :x €L} and
[x] 0, = {y €L : (y,x) €0;} is the congruence class of x
modulo 0;. It is known that (L /6;; v, A, [0],, [1],) is a

bounded lattice, where

S

[x] ajv[y]ej = [xvy] 0 [x]oj/\[y} 6 = [xAy] 6 and [1]0j
—1,[0],, = {0}.
We show that L/6; is a distributive lattice. Let [x], ,

[yl [z, €L/6;, we have [x], A(lyl,VId,) =[x,

ATy, V"], ). by (@)

oo

=], Ay v,
— [xo OA(yo o VZD ) )]0’,
=[(x"" Ay " )V(x° AZ"° )]6j,by distributivity of L°*

— [xoo/\yoo]ajv[xoe/\zoo]ﬂj

= (s, (i, 2

7
Then L/6; is a bounded distributive lattice.

Define an operation ® on L/6; by ] =[x],, for
J ]
every [x] €L/f;. Then we have [x]° = [x*°] =
J 7 J
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Therefore (L /6;; °) is a Kleene algebra.
Suppose that F is a j-filter of a locally bounded
K,-algebra L. Define a relation 6r on L as follows:

(x,y) EOr=x" "N "N =y " Af " Aj,for some f EF.

Theorem 33. Let F and G be j-filters of a locally
bounded K,-algebra L. Then

(1) 0 is a j-lattice congruence on L with
Coker 6 = F,
(2) FCG < 0:Chg.

Proof. (1) It is clear that fr is an equivalence rela-
tionon L. Let (a,b), (c,d)€0r. Then a’ Afy °Af = b°° A
fi°Aand c*°Af; *Af = d°° Afy ° Aj, for some fi,fo € F.
Thus we have

(ave) " A(finf) " Aj=(a""vc*

AN N

= (o AV )
Aj, by distributivity of L°*

= (2" A Af TNV (C Af U Afy ) by
Lemma 23

= (0 A A ANV AR A A)
= (b vd )N A )N
=(bvd)" " Alfinf2) "N,

where finf, €EF, and

(anc) /\(fl/\fz)

= (2" A N)A(C A A)

= (0" A MA@ AR A)

(0 A AR AR A

b/\d ‘A (f1/\f2)

Hence (avc,bvd), (11/\c7 bad) €0p. Then 0f is a lat-
tice congruence on L. Now, we show that Co ker 0 =
F. Let yeCoker 6r. Then (y,1)€60r and hence
YO AN =T1°Af°°Aj, for some fEF. This gives
y'°>f°AjEF. Since y°°,yVjEF, then y=
y°°A(yVvj) EF. Therefore Coker 6rCF. On the other
hand, let fe€F. Thus  f >j. Then
foONTTN =1 Af7° A, for some f; EF. implies (f,1)
€0r. Thus fECo ker 0. Then FCCo ker 0r. Conse-
quently, Co ker 0r = F and therefore ¢ is a j-lattice
congruence on L.

(@ AN AN

(2) Let FCG. Suppose that (x,y) €0r. Then x°°Af°°A
j=y Af°°A for some fE€FCG. Thus (x,y)E0c.
Therefore 0rCfs. Conversely, let 0rCs. Then
F = Co ker 6rCCo ker g = G. Hence FCG.

Theorem 34. For any two j-filters F and G of a locally
bounded K,-algebra L, we have

(1) OrvOlc = Orve,
(2) 0rnbc = Ornc.

Proof. (1) Since F,GCFVG, then by Theorem 33,
0rCOrvc and 0cCOryc. Hence 0r ¢ is an upper bound
of 0r and f¢. Suppose that 0y is an upper bound of
0r and 0g. Thus we have 6rCly and 05C60y. Then
again by Theorem 33,FCH and GCH. This gives
FvGCH and hence 0r,gC0y. Therefore 6Or,g is the
least upper bound of 6r and 6. Then 0rvl; = Opyc.
(2) As FNnGCF and G, then by Theorem 33, 0 cCOr
and 0rncCOg. Hence 0rng is a lower bound of 6r and
0c. Let 0y be any lower bound of §r and . Thus we
have 05COr and 05 C0. Then again by Theorem 33,
HCF and HCG. This implies that HCFNG and 6y
COrnG- Therefore 0rqc is the greatest lower bound of
O and 0. Then OrN0g = OrnG.

Consider Con;(L) = {0r : F €F;(L)} as the set of all
j-lattice congruences of L that are induced by
j-filters of L.

Theorem 35. Let L be a locally bounded K,-algebra.
Then
(Conj(L); Vv, A, 0rv,01) is a bounded lattice.

Proof. Clearly, 6;v and 6y = V; are the smallest and
largest elements of Con;(L), respectively. Let 0f, fc €
Conj(L) and F,GEF;(L). Then by Theorem 34, we
have OrVvlg = Oy and OrNlg = OrnG.

Thus (Con;(L),V, A, 0rv,0;) is a bounded lattice.

6. Principal j-lattice congruences of a locally
bounded K,-algebra

In this section, we present and characterize the
principal j-lattice congruence on a locally bounded
K,-algebra L and we study the relationship between
the principal lattice congruences and the principal
j-lattice congruences on L.

Lemma 36. If F = (x)*, for all x€L, then
(a,b) €0 o =a’ AX"Af =D AXTTA,

and Coker 0, = (x)®.
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Proof. Let F= (x)*. Let (a,b)EH(x)A. Then
A AfCA = bAF A, for some f € (x)% =[x Af).
Thus f°° > f > x°°Aj. Then

a’ AfT NAX" =D AfTT AjAX" implies

a’ AN =0 AT AL

Since (x)* is a j-filter of L, then by Theorem
33 (1),0(x)A is a j-lattice congruence on L with
Coker 0, = (¥).
Now, we show that 6. is a principal j-lattice
congruence on L.

Theorem 37. Let L be a locally bounded K,-algebra.
Then H(X)A = O--pjp), for all xEL, that is, ﬂ(x)A is a
principal j-lattice congruence on L.

Proof. Let (a,b) €0, 4j1). Then,

(a,b) €0 pj1)

=aAx""Aj=bAx""Aj,by Theorem 7

=a" Aavj)A A =D ADVI)AX" A

=a"" A" A((aV))A) =b°° Ax T A((BV))A))
=a""Ax""Aj=b""Ax"" Aj, by the absorption identity,

where z = z°° A(zVj) for all z€ L. This gives that (a,b)
€02 Hence fx- pj1) SO . Conversely, let (a,b) €
0(x)A. Then,

(ll,b)eg()()A
A A= b A A
=a" A" A@Vi)N=b"" Ax"° A(DV)) A,

=anx’  Nj=bAxX""Af.

Thus (a,b)€0<xn,\j,1) and hence 0(x)AQ0(waj’1>.
Therefore 0(x)A = (x> nj1)-
The following two results are two characterizations

of a principal j-lattice congruence of a locally
bounded K,-algebra L.

Lemma 38. The principal lattice congruence 6.1y of a
locally bounded K,-algebra L is a principal j-lattice
congruence on L if and only if j > x.

Proof. Let 6(,1) be a principal j-lattice congruence
on L. Then

j€Coker 4. Thus jax =1Ax =x. Hence j> x.
Conversely, let f(,1) be a principal lattice congru-
ence on L andj > x. Then jAx = x = 1Ax implies (j,1)

€0(,1) and hence j€ Co ker 0, 1). Therefore 0, 1) is a
principal j-lattice congruence on L.

Theorem 39. Let 0, 1) be a principal lattice congruence
on a locally bounded K,-algebra L. Then 0(x1) = 0,2 if

and only if j > x.

Proof. Let (1) =0s. Then 6 is a principal
j-lattice congruence on L, by Theorem 37. Implies
j > x, by Lemma 38. Conversely, let j > x. Then by
Lemma 38, 1) is a principal j-lattice congruence
on L. We show that

'9(x.1) = 09<x)A. Let (11, b) Eﬁ(]ﬂ). Then,

(a,b) €01
=arx=>bax

= (anx)”" = (bax)"’
AR =B A

=a AN =DTTAXN.

Hence (a,b)€d 0 implies H(x_1>g6<x)A. On the
other hand, let (a,b)€0,,)». Since a = a"°A(avj) and
b ="b""A(bvj), we have

(a,b)EG(x)A
=a"" AN =D AXN

=a" A" A@Vi)N=b"" Ax"° A(DV)) A,
by the absorption identity

=a’" Aavj)Ax " Af=b""A(bV])AX"° A
=aAx" "N =bAX"" A

=arx" AAX=DbAX" AjAX

=aAx" Ax=bAx""Ax,asx < j

=aAx=DbAx,asx <x°°.

Thus (a,b) €0(,1) and hence 0(x)A C0x1)- Therefore
0(,(11) = 6<X>A.
We denote the set all of principal j-lattice congru-
ences on a locally bounded K,-algebra L by
Conl' (L) = {0, : (x)* €F/(L)}.

Theorem 40. Let x and y be any two elements of a
locally bounded K,-algebra L. Then,

1) x< y= 0(y>A§0(X>A.
YR
(3) Bpnfy s = 6

(xny)™s

x (xvy)A )
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4) Con]’f'(L) is a bounded sublattice of Con;(L).

Proof. (1) Let x <y. Then (y)A_( )*, by Theorem
20. This implies that 0y S0 , by Theorem 32 (2).

Conversely, let 6, gﬂ () Then again, by Theorem
32 (2), (y)*c(x)*
rem 20 (4).

(2) For all §,)» and 0,)r, we have

. This implies that x <y, by Theo-

02 VO()a =038y (2, by Theorem 33(1)
O a2, bY
Theorem 22 (1).

(3) Similarly, we get

Oxs NOya = O30, by Theorem 33(2)

Oevy)*, by Theorem 22 (2).

(4) Clearly, 0ys = Vi, ;s = 6p. From (2),(3),
we get
(Conf(L);\/,/\, 01),0p)r) is a bounded sublattice of
Con;(L).
Theorem 41. Let L be a locally bounded K,-algebra.
Then the class Con]’.] (L) of all principal j-lattice congru-

ences forms a Kleene algebra which is isomorphic to
1—“]’.”(L).

Proof. It is clear that 0<1>A = f;v and 0<0>A =V are
the least and greatest elements of Con]’-’ (L). Now, we

prove that Con]’.’ (L) is a distributive lattice. Let
09+ 0,8+ 0(y» €Con?(L). Then

0(X)A n [ﬁ(y)AVH@A] = 0<X>An6<y/\z)A

=0 )8, by Theorem 40

(xv(yAz))

=03 n(y)*v(z)*), Py Theorem 22

(2 Vi@ n(z)d) PY Theorem 26

=0 )8, by Theorem 22

((xvy)n(xvz))

=0 VO 2t by Theorem 40

(xvy)*

= (0<X)A 00<y)A)V(0(x)A N 0(Z)A).

Hence Con]’.j (L) is a distributive lattice. We now
define an operation * on Con/ (L) by 6;)A =0y, for
all §,,» €Conf(L). We have

A= H(X)A7 H(O)A = 6(00)A = 0<1)A,

and

(0@2nby2) =0, by Theorem37(2)

=0 =0

((evy))® — Y ay)®

=012V0,. s,by Theorem 37(2)

=02 VO,
Also,

H(X)A n 0(X>A = 0(X)A ﬂH(XQ)A

by Theorem 37(3)

xvx) ’

=022 €0y py )2 by Theorem 37(1)

(rvxe)

=02V, s,by Theorem 37(2)

=0y)a V)

Then (Con(L);v,n,", 01+, V1) is a Kleene algebra.
Now, we show that Con! (L) and F}'(L) are isomor-
phic Kleene algebras. Define a map f:F/(L)—
Conl'(L) by f((a)®) = 0,,», for all (a)* €F/(L). Then
we have

f((@)*Vv(b)*)=f((arb)*),by Theorem 22(1)
= 0yt

=02 V0>, by Theorem 37(2)

=f(@)Vvf(b),

and

f((@)*n([®)*)=f((avb)*),by Theorem 22(2)
= 0y

=0,2N0,2, by Theorem 37(3)

=f(a)rf (D).

Also,

(F(@)%) =605 =02 =F((a")").

Then f is a homomorphism. Let f((a)*) = f((b)*).
Then 6,» = 6,s. Implies a = b. Hence f is an injec-

tive map. Also, for every 6<H>AEC0n]I-’ (L) we have
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0> =f((@)%), (a)*€F/(L). Then f is a surjective
map. Therefore F/(L) and Conf(L) are isomorphic
Kleene algebras.

Example 42. Consider the locally bounded
K,-algebra L as in Example 27. The principal j-lattice
congruences on L are gives as follows:

Oy =01 = {{0},{h,b}7 {u,f.d},LV},
040 =1{{0.a,f.d},{L',h,b}},

0 = {{0,n,b},{L",a.f,d}} and 00p = V1.

The lattice Conj'(L) is described as in Fig. 4.
We observe that (Con}7 (L),”) is a Kleene algebra,
where

*

1o =000y =008, =09 =005,
0

It is clear that I-’]’.j (L) and Con]I-) (L) are isomorphic
Kleene algebras under the map (a)* =0

*

(@?* = 0<d°)A = H(h)A y and 0(0)A = 0(0°)A = 0(1>A

Definition 43. Let 0 be a lattice congruence on a locally
bounded K,-algebra L. Then 0 is called a congruence on

Lif

(x,y) € §implies (x°,y°)EL.
Now, we give the answer to the following ques-
tion: whether 6« is a principal j-congruence on L.

To answer this question, we need the following:

&gy

B¢ 1 |

o Op)
Fq)h

Eﬂﬂf{L}

Fig. 4. Con}’ (L) is a Kleene algebra.

Definition 44. A Boolean element a is defined as
an element of a locally bounded K,-algebra L, where av
a’ =1

Lemma 45. The set B(L) = {a €L°° : ava’=1} is the
greatest Boolean subalgebra of L°°.

Proof. (1) Let a€B(L). Then we have
a’*=1aa"° =(ava’)Aa’’
=aVv(a

=av(ava®)’

*Aa’’),by modularity of Lwitha®" >a

=avl’

=av0=a.
Then a€L’°° and hence B(L)CL"".

Itis clear that 0,1 B(L). Leta,b€B(L). Then ava® =
1 and bvb® = 1. By distributivity of B(L), we get

(anb)v(anb)” = (anb)v(a°vb*)
=(ava’vb’)A(bva'vb®)

=(1vb’)A(a° V1) =1.

Then anbeB(L). Similarly, one can show that

avbeB(L). Therefore B(L) is a bounded sublattice of
L°*. LetaeB(L). Thena’va’® = a°va =1 and hence
a° €B(L). Also, we have ana® =a°°Aa° = (a’va)' =
1° =0.
Thus (B(L); V, A,*,0,1) is a Boolean subalgebra of L°°.
Now, we show that B(L) is the greatest Boolean
subalgebra of L°°. Consider H be another Boolean
subalgebra of L°°. Then for all a€H, we have
ava® =1 and aaa® =0. This implies that a€B(L)
and hence HCB(L). Therefore B(L) is the greatest
Boolean subalgebra of L°°.

Theorem 46. Let a be a closed element of a locally
bounded Ky-algebra L such that a <j°". Then 6, is a

j-congruence on L if and only if a is a Boolean element of L.
Proof. Let a be a Boolean element. Then
ava’ =landana’ =a’Aa’" =(ava’)" =1"=0.

0,0 1s a j-lattice congruence on L, by Theorem 37.
Now, we prove that 0 ,» preserves °. Let (x,y) €0 .
Then we get

(x,y) €0,
AT A =Y AR AT

:(xoo/\uoo/\j)c :(yoe/\uoa/\j)ﬂ
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o

=x'va'Vj' =y'va’vj’,asz""" =z’
=x"va’=y°va’,asa’ >j°

oo

=(x"va’)Aa”" =y va’)Aa

=x"Aa"")V(@ A" )=y Aa’")V(a'ra®),
by distributivity of L°°

=x'Aa""=y'Aa"",asa’Aa’” =0

=x"Aa" "N =y Aa""N.
Hence (x*,y°)€0,s. Therefore 0,. is a
j-congruence on L. Conversely, let 6, be a

j-congruence on L and a <j**. Then Cokerf . =
(a)*. Thus (a,1)€0,,» and hence (a°,1°) €0 ,s. We
get

(11° ,0) S ﬁ(u)A

:aooo/\aco/\jzooo/\aoo/\j

oo

=a’Aa’°ANj=0,asa’ =a’
=a’nan=0,asa’” =a
=(a’nanj)” =0’
=a’"va'vj’ =1

=a’’va’=1l,asa’ >j°

°

=ava’=1,asa’’ =a.
Therefore a is a Boolean element of L.

Example 47. Consider the locally bounded K,-algebra
L which is represented in Example 27. The set B(L) =
{0,b,d,1} contains all the closed elements of L. Now, 0,
b are Boolean elements of L such that 0,b <j°° =c.
So 04 =V and 04 ={{0,a,f,d},{LY h,b}} are
j-congruences on L. But d,1€B(L) and d,1 </ j°°. So
0ap = {{0,h,b},{L",a.f,d}} and 0;)» = {{0}, {h,b}o,
{a,f.d}, LV} are not preserve the unary operation .
Hence 6,2 and 6, are not j-congruences on L.
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