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ORIGINAL ARTICLE

Enhancing Internet of Things Data Balance Based on
Feature Selection and Dataset Integration

Khaled Abdelrahman Abdelhakim a,*, Asaad Ahmed Gad-Elrab a,b,
Mohamed Sayed Farag a,c, Shaban Ebrahim Abu-Youssef a

a Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypt
b Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
c Computer Science Department, Obour High Institute for Informatics, Cairo, Egypt

Abstract

The Internet of Things (IoT) has significantly advanced since its creation, revolutionizing both business processes and
social interactions by connecting devices and data. However, this progress introduces security challenges. To tackle these
issues, this paper presents an Imbalance Reduction Model in IoT Data Sets Based on Feature Selection architecture. This
model employs machine learning methods to classify IoT traffic, emphasizing flow and Transmission Control Protocol
data from datasets like UNSW-NB15 and Bot-IoT. The introduced model is proficient at distinguishing between normal,
Denial of service, and distributed Denial of service traffic, addressing problems like data imbalance and overfitting. It
achieves classification accuracy between 98.38% and 100%, significantly improving IoT security by effectively identi-
fying and countering malicious traffic. Utilizing machine learning shows resilience to emerging threats, underscoring its
potential as a strong intrusion detection system for IoT settings.

Keywords: Bot-IoT and UNSW-NB15 datasets, Cyber security, Data science, Feature selection, Internet of things,
Intrusion detection system, Machine learning

1. Introduction

T he Internet of Things (IoT) has been trans-
formative, connecting a vast array of devices

that communicate to enhance efficiency and deci-
sion-making. These devices, ranging from simple
sensors to complex systems, have been widely
adopted in various sectors, including smart homes,
healthcare, and industrial automation. The global
IoT ecosystem has rapidly expanded, with pro-
jections suggesting that up to 75 billion devices
could be connected by 2025 [1]. However, the
widespread adoption of IoT has introduced signifi-
cant security challenges. The decentralized and
heterogeneous nature of IoT networks makes them
particularly vulnerable to cyberattacks. These
networks consist of diverse devices with varying
capabilities and security standards, which cybercri-
minals often exploit [2]. Traditional security

methods, although effective in conventional IT
systems, often fall short in addressing the unique
demands of IoT environments [3].
To address these security concerns, Machine

Learning (ML) and Deep Learning (DL) techniques
have been increasingly applied. These methods have
shown potential in detecting and classifying cyber
threats by analyzing large volumes of data generated
by IoT devices. Nonetheless, the effectiveness of
these models heavily depends on the quality of the
data and the features selected for training. A signifi-
cant challenge faced in this area is data imbalance,
where certain types of network traffic or attack sce-
narios are underrepresented in the datasets. This
imbalance can result in biasedmodels that struggle to
detect less frequent or emerging threats [4].
Furthermore, existing studies have primarily focused
on detecting specific attack types, such as distributed
Denial of service (DDoS), while other IoT-specific
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threats, like firmware attacks and sensor spoofing,
remain underexplored [5].
IoT's integration with stochastic computing para-

digms has facilitated the numerical simulation of
complex systems, such as heterogeneous mosquito
models. By incorporating randomness and uncer-
tainty, IoT-enabled stochastic computing offers a
more accurate simulation of biological systems,
enhancing reliability in modeling mosquito pop-
ulations [6]. Similarly, IoT-enabled heuristic models
using Morlet wavelet neural networks have
improved the numerical treatment of heterogeneous
mosquito release ecosystems, capturing nonlinear
dynamics and optimizing intervention strategies [7].
IoT technology has also been applied to solve

complex differential equations in engineering and
science. For example, a neural network procedure
has been developed for solving the sixth-order
nonlinear singular pantograph differential model,
addressing the challenges posed by its high-order
and singular nature [8]. Additionally, Guderman-
nian neural networks, optimized through IoT, have
been used to solve two-point nonlinear singular
models in thermal-explosion theory, providing ac-
curate predictions by addressing singularities [9].
With the rapid increase in diverse devices designed

to simplify daily life, improve health management,
and boost efficiency, the IoT has become essential for
enhancing human experiences. This rise in device
use has generated vast amounts of data and requests,
but it has also introduced vulnerabilities, including
attacks that transmit false data to obtain sensitive
information. Detecting such erroneous data remains
a significant challenge. Although well-known attacks
can be managed with established methods, new
threats require innovative techniques, including ML
and DL, alongside existing hybrid strategies [10].
Researchers have invested significant effort into

developing ML-based systems, involving key pro-
cesses suchasgatheringdata fromvarious sources and
devices. This task presents challenges due to the di-
versity of data and specific attack patterns of different
devices. Proper data cleaning and preparation, while
maintaining its original characteristics, are essential,
followed by feature selection for model training. The
system's performance hinges on the quality and rele-
vance of these features, enhancing its speed and
robustness [10,11]. Cybercriminals might intercept
sensitive communications, disrupt operations, or
exploit vulnerabilities to launchDDoS or ransomware
attacks, even targeting security devices like cameras.
The research domain in this area covers various

aspects, including data collection and the challenges
of adapting to new environments. Efforts are made
to avoid erroneous data and ensure compatibility

with modern systems. Some studies emphasize data
cleaning and retaining essential information, while
others explore feature selection techniques. These
techniques vary from manual selection based on
feature descriptions and attack detection impact to
mathematical methods (e.g., percentile selection, K-
Best, heatmap) and machine learning methods.
However, some studies fail to critically assess

featureeclass relationships, leading to the inclusion
of influential but potentially misleading features. To
address this, correlation matrices are often used.
This research addresses these issues by intro-

ducing a system that combines two established
datasets, Bot-IoT and UNSW-NB15. These datasets
were manually cleaned and merged, selecting sig-
nificant features from a research standpoint. Despite
challenges in the manual process, it was crucial to
the study. The model employed LSTM with two
hidden layers, using the chunking method due to
large data volumes. A novel approach was devel-
oped to reduce reliance on potentially problematic
features: feature selection was performed separately
on each dataset, followed by a correlation matrix
and merging. This strategy cut the feature count
from 13 to 6, speeding up training and minimizing
the risk of system failure in identifying zero-day
attacks by balancing feature reliance [10,11].
Protective devices, such as cameras, are vulner-

able to cyberattacks, with incidents rising more than
threefold from the first half of 2019 compared with
the latter half of 2018. During this time, IoT devices
faced ~2.98 billion cyber-attacks [1]. This increase
correlates with the expanding use of IoT devices,
which were estimated at 30 billion in 2020 and are
expected to reach 75 billion by 2025 [12].
Essential security practices for IoT devices involve

encrypting communications to safeguard data,
implementing regular updates to fix vulnerabilities,
using robust authentication methods, securing net-
works with firewalls, managing devices securely,
conducting regular security audits, and educating
users about cybersecurity. With the expanding IoT
landscape, focusing on cybersecurity is crucial to
maintaining the safety and efficiency of these
interconnected systems.
The key contributions of this study include:

(a) Creation of a new, balanced dataset by merg-
ing several datasets, covering various attack
patterns and addressing data inconsistencies.

(b) Reduction of the total number of features by
selecting a subset from the integrated datasets.

(c) Application of feature selection methods to
remove features that could impair model
accuracy.
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(d) Development of an effective model for
detecting zero-day attacks and managing real-
world. Scenarios, utilizing various machine
learning techniques for both binary and multi-
class classification with the new dataset.

The paper is structured as follows: Section 2 re-
views related research, while Section 3 describes the
IRM-BFS architecture in detail. Section 4 covers the
experiments conducted with this architecture and
their outcomes. Section 5 presents an analysis and
comparison with other solutions. Finally, Section 6
concludes with reflections and future research
directions.

2. Background and related work

Khraisat et al. (2021) [13] offer a comprehensive
analysis of IoT intrusion detection systems, exam-
ining methods, deployment strategies, datasets, and
technologies. They highlight both advantages and
challenges related to IoT architecture, summarize
recent research, and suggest improvements for IoT
IDS performance. The paper also addresses the
limitations of traditional systems and outlines future
research directions.
Peterson et al. (2021) [14] provide an in-depth re-

view of the Bot-IoT dataset, discussing its features,
limitations, data cleaning, and previous research
applications. Zeeshan et al. (2021) [15] propose a
Protocol-Based Deep Intrusion Detection (PB-DID)
architecture, creating a dataset from IoT traffic by
comparing UNSW-NB15 and Bot-IoT features,
focusing on flow and Transmission Control Protocol
(TCP). The PB-DID model classifies nonanomalous,
Denial of service (DoS), and DDoS traffic, address-
ing issues like imbalance and overfitting, and ach-
ieves a classification accuracy of 96.3% using deep
learning techniques.
Latif et al. (2022) [16] introduce a lightweight dense

random neural network (DnRaNN) for IoT intrusion
detection, suitable for resource-constrainednetworks.
Their model, tested on the ToN IoT dataset, provides
valuable insights and achieves high accuracy in
detecting attacks. Addressing imbalanced datasets,
oversampling, and undersampling techniques are
discussed. Undersampling reduces the majority class
to match the minority class, with methods like
Random Undersampling and Focused Under-
sampling. Oversampling increases the minority class
representation, using RandomOversampling and the
Synthetic Minority Over-sampling Technique, each
with its advantages and trade-offs [17,18].
Wang and Liu's study on imbalanced class issues in

Bot-IoT achieved 84% accuracy, highlighting bias

problems [17]. Wu and Liu explored ensemble
methods on UNSW-NB15, with 87% accuracy, but
noted computational intensity [19]. Evans and Zhao
focused on feature selection's impact, reporting 86%
accuracy [20].Wang and Chen used transfer learning
for UNSW-NB15, reaching 92% accuracy, empha-
sizing the need for relevant pre-trained models [18].
Liu andWang's reinforcement learning approach for
UNSW-NB15 reached 93%accuracy [21]. Larriva et al.
[22] examined preprocessing techniques, reporting
high accuracy for UNSW-NB15, UGR16, and NSL-
KDD using normalization methods and Multi-Layer
Perceptron classification. Another study [23] applied
SyntheticMinorityOver-sampling Technique to Bot-
IoT, achieving perfect accuracy with a Deep Recur-
rent Neural Network (DRNN), though normalization
might affect realism.
Churcher et al. [24] compared machine learning

techniques on Bot-IoT, achieving 99% accuracy with
K-Nearest Neighbors (KNN) by selecting features
with high relevance. The Improved Conditional
Variational AutoEncoder (ICAVE) method balanced
datasets like NSLKDD and UNSW-NB15, with
varying accuracy across dataset variants [25]. Shafiq
et al. [26] used various machine learning techniques
on Bot-IoT, focusing on top features for high accu-
racy. Guizani et al. [27] and Alkadi et al. [28] applied
LSTM and BiLSTM techniques on UNSW-NB15 and
Bot-IoT, achieving notable accuracy with BiLSTM
reaching over 98%.
The research highlights the importance of feature

selection and dataset integration, but many studies
rely on individual datasets, potentially overlooking
vital information. Challenges arise in creating
balanced datasets from existing ones, such asmanual
merging and feature selection. This study will
explore methods for constructing reliable datasets
and models, emphasizing feature selection and the
use of various ML techniques for classification.
A common approach in these studies is to use

feature importance or information gain for feature
selection. However, adding new data might neces-
sitate feature replacement, requiring the identifica-
tion of crucial features that remain relevant with
additional data. While many studies use a single
dataset for model training and validation, few
compare and integrate features from multiple
datasets to form a new dataset. Utilizing the full
dataset can lead to more comprehensive learning
and avoid missing critical details.
Previous research indicates that most studies apply

ML or DL methods to develop models for detecting
cyber-attacks, relying on existing datasets. This often
results in a gap between model performance and
real-world data, which includes various attacks and
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inconsistencies. Moreover, current studies have not
compared datasets to identify overlapping features,
which is crucial for training effective ML or DL
models. Creating models with real data is preferred,
but acquiring such data is challenging due to the
time, cost, and effort required.
One study proposed generating a balanced data-

set from multiple existing datasets but faced issues
such as manual dataset merging and feature selec-
tion. Many studies aiming for high model efficiency
by focusing on class-specific features may find their
models less effective in real-world scenarios. This
study will address these challenges by developing
methods for building a new dataset and construct-
ing a model that selects reliable features. The study
will also examine the proposed model using various
classification methods and ML techniques, detailed
in the following sections.

3. The proposed imbalance reduction model in
IOT data sets based on feature selection (IRM-
BFS)

3.1. Basic idea

Given the difficulties faced in the research, a new
and effective approach was introduced to tackle the
issues of combining two distinct datasets. The
Imbalance Reduction Model in IoT Data Sets Based
on Feature Selection (IRM-BFS) is proposed to
address these challenges. This model incorporates
several key elements: (1) Data preprocessing, (2)
Feature selection (FS), (3) Integration of datasets
using shared features, (4) Feature elimination, and

(5) Application of standard machine learning
methods to the combined datasets. The FS tech-
nique was applied separately to each dataset to
ensure optimal integration and efficiency. The
common features selected were crucial for merging
the datasets, resulting in a more cohesive and
refined dataset that highlights the essential attri-
butes for the analysis.

3.2. Proposed model

The amalgamated dataset, now refined to
encompass these nine selected features, underwent
training and testing via four distinct machine
learning techniques: Decision Trees (DT), k-Nearest
Neighbors (KNN), Random Forest (RF), and
XGBoost. The focus of the analysis lay in the clas-
sification of data into three categories of attacks:
Normal, DoS, and DDoS.
However, the outcomes of the model testing

phase presented a perplexing scenario. Strikingly
similar results were yielded by all four machine
learning methods, implying a seemingly illogical
correspondence between them. This called for a
comprehensive investigation to discern the root
causes of this unexpected uniformity.
To delve into this issue further and illuminate the

reasons behind the congruent results, a compre-
hensive examination was initiated. A correlation
matrix was employed to explore the relationships
between each feature and their impact on classifi-
cation. This analytical approach served as a critical
step in elucidating the intricacies of the model's
behavior Fig. 1.

Fig. 1. The proposed imbalance reduction model based on feature selection Model.
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4. Preprocessing

Dataset preprocessing involves several essential
steps performed to guarantee the data's quality and
appropriateness for further analysis. These steps
include cleaning data to address inconsistencies and
errors, integrating data from various sources,
transforming data to standardize and scale features,
and reducing data dimensions while preserving
crucial information. When these preprocessing op-
erations are conducted methodically, they improve
the reliability and efficiency of intrusion detection
systems within IoT networks.
Handling missing values is a common aspect of

data cleaning. If we represent our dataset as X ¼
fx1; x2;…; xng, then replacing each missing value xi
with the mean m can be represented as:

x0i¼
�
xi if xi is not missing
m if xi is missing ð1Þ

Normalization techniques, like Min-Max normali-
zation, adjust the data to a defined range, often
between 0 and 1. The Min-Max normalization for-
mula for a value xi in a dataset is:

x0i¼
xi �minðXÞ

maxðXÞ �minðXÞ ð2Þ

where:
xi is the original value,
min(X ) and max(X ) are the minimum and

maximum values in the dataset X,
x0 i is the normalized value.

4.1. Feature selection

At this stage, each dataset is independently sub-
jected to four distinct feature selection techniques.
The primary goal is to achieve optimal alignment of
features between the two datasets before merging
them into a single, comprehensive dataset. This
process aims to reduce the number of features,
thereby decreasing the data volume for subsequent
phases. Feature selection methods are employed to
accomplish this objective. The essence of this phase
lies in the meticulous selection and refinement of
features to harmonize the characteristics of both
datasets. This feature alignment is critical before
dataset integration, ensuring that only the most
pertinent and informative features are retained,
thus streamlining subsequent data analysis and
modeling. By strategically reducing the feature
count, this phase enhances resource efficiency,
model interpretability, and performance in the later
stages of the research or project.

In the context of feature selection for each cleaned
dataset, Ci, a crucial procedure is involved. This
involves meticulously selecting features to acquire a
subset that best serves the desired objectives. The
variable Si is introduced, signifying the collection of
carefully chosen features.
For every cleaned dataset, Ci, a diligent and sys-

tematic feature selection process is executed. This
process seeks to sift through the available features
and determine the most relevant and valuable
subset, represented by the variable Si, which en-
capsulates the chosen features Eq. (3).

Si¼SelectFeaturesðCiÞ ð3Þ

4.2. Integrating common features

To integrate common features from the datasets,
an intersection operation is performed on the
selected features. This involves identifying and
extracting the features that are common across all
datasets, resulting in a unified set of shared char-
acteristics. This process ensures that only the fea-
tures present in every dataset are retained, leading
to a consistent and integrated set of attributes. The
result of this intersection is a unified collection of
common features in Eq. (4).

CommonFeatures¼S1∩S2∩…∩Si ð4Þ

4.3. Features elimination

Feature elimination is essential for boosting the
performance and effectiveness of machine learning
models. By removing correlated features related to
the classes, redundancy is minimized, which en-
hances model interpretability and generalization.
This technique decreases dimensionality, reduces
overfitting, and streamlines the model, resulting in
improved computational efficiency. The Pearson
correlation coefficient between two variables, X and
Y, is defined in Eq. (5):

rxy¼
PðXi �XÞðYi �YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðXi �XÞ2P ðYi �YÞ2

q ð5Þ

Where, rxy represents the correlation coefficient be-
tween two variables, denoted as X and Y. The sub-
scripts i refer to individual sample points, where Xi

and Yi represent specific values in the datasets. X and
Y signify the mean (average) of the X and Y samples,
respectively. The numerator,

PðXi �XÞðYi �YÞ com-
putes the sum of the product of deviations of paired
scores from their respectivemeans. The denominator
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involves the product of the square root of each sumof
squares of the deviations. The correlationmatrixR for
a set of variables ðX1;X2;…;XnÞ is constructed in
Matrix (6):

R¼

0
BBBB@

1 r12 r13 … r1n
r21 1 r23 … r2n
r31 r32 1 … r3n
« « « 1 «
rn1 rn2 rn3 … 1

1
CCCCA ð6Þ

In this matrix: Each element rij is the correlation
coefficient between Xi and Xj. The diagonal ele-
ments are all 1, as the correlation of a variable with
itself is always perfect, and the matrix is symmetric,
meaning ðrij ¼ rjiÞ.

4.4. Machine learning methods

DT: is a flowchart-like structure in which each
internal node represents a test on an attribute, each
branch represents the outcome of the test, and each
leaf node represents a class label (decision taken
after computing all attributes). The paths from root
to leaf represent classification rules. In mathemat-
ical terms, the decision at each node is made using a
function like Eq. (9).

f ðxÞ¼

f1ðxÞ if condtion1

f2ðxÞ if condtion2

«

«

f3ðxÞ if condtion3

8>>>>>><
>>>>>>:

ð9Þ

Where x represents an input sample, f(x) repre-
sents the decision function, fi(x) represents the de-
cision function at the i-th node, and conditioni

represents the decision rule derived from the data at
the i-th node.
Gini Impurity: is a measure of how often a

randomly chosen element would be incorrectly
identified. An attribute with a lower Gini impurity is
preferred. The Gini Impurity of a set S is defined as:

IGiniðSÞ¼1�
Xc

i¼1

p2
i ð10Þ

where pi is the proportion of the elements in class i
in the set S, and c is the number of classes.
Entropy (Information Gain): Entropy measures

disorder or uncertainty. The goal of machine
learning models is to reduce this uncertainty. The
entropy of a set S is defined as shown in Eq. (11):

IEntropyðSÞ¼ �
Xc

i¼1

pi log2pi ð11Þ

where pi is the proportion of the elements in class i
in the set S, and c is the number of classes.
The objective function for a DT is to maximize the

information gained at each node, which is defined
as the difference in impurity before and after the
split. Information gain IG for a split on dataset D
with subsets ðD1;D2;…;DkÞ based on feature A can
be computed as shown in Eq. (12).

IGðD;AÞ¼ IEntropyðDÞ �
Xk

j¼1

��Dj

��
jDj IEntropy

�
Dj

� ð12Þ

where jDjj is the number of elements in subset Dj,
and jDj is the total number of elements in dataset D.
XGBoost: is a gradient boosting framework that

optimizes the following objective function, which
comprises a loss function and a regularization term
as shown in Eq. (13)

Obj¼
Xn

i¼1

l
�
yi; byi�þX

k

U
�
fk
� ð13Þ

Where lðyi; byiÞ is the loss function, and U( fk) is the
regularization term.
Random Forest (RF): RF algorithm creates a set of

decision trees from randomly selected subsets of the
training set and aggregates their predictions. For
classification and regression, the final prediction by
for a sample x shown in Eq. (14):

by¼modefT1ðxÞ;T2ðxÞ;…;TnðxÞg ð14Þ

k-Nearest Neighbors (KNN): Given a training set
and a new sample x, KNN finds the kNN and pre-
dicts the output based on these neighbors. The
Euclidean distance is calculated as shown in Eq. (15)

d
�
xi;xj

�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

l¼1

�
xil � xjl

�2vuut ð15Þ

where p is the number of features. The final
prediction is made by majority voting or averaging
of the labels of these k neighbors.

5. Experiments and results

5.1. Datasets

Bot-IoT Dataset: The Bot-IoT dataset is a large and
detailed collection of data related to IoT network
traffic, featuring approximately 46 attributes. These
attributes cover various aspects of network activity,
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including source and destination IP addresses, port
numbers, packet lengths, and flow durations. The
dataset supports thorough analysis and the creation
of advanced machine-learning models for detecting
anomalies and intrusions. Its extensive and varied
features are ideal for researchers aiming to develop
robust security measures for IoT environments.
UNSW-NB15 Dataset: The UNSW-NB15 dataset is

a significant resource frequently used in network
intrusion detection research. It contains 1,753,342
records and encompasses nine types of attacks,
making it suitable for in-depth analysis. With a total
of 49 features, the dataset provides a broad range of
data for developing and accessing intrusion detec-
tion systems, benefiting from its size and diversity to
tackle security issues effectively.

5.2. Performance evaluation

In this study, the classifiers’ performance has been
evaluated using critical metrics: Precision, Recall,
and F-measure. These metrics are obtained from the
confusion matrix analysis shown in Table 1. The
definitions and explanations of these key evaluation
criteria are detailed below.
Confusion matrix: A confusion matrix is a table

used to evaluate the performance of a classification
model. It is defined as follows in Table 1:
Precision: Precision measures how well the model

identifies true positive (TP) cases, reflecting the ratio
of correctly identified intrusions to all instances
labeled as such. It is calculated as the ratio of TP to
the sum of TP and false positive (FP), mathemati-
cally expressed as:

P¼ TP
ðTPþ FPÞ ð16Þ

Recall: Recall, also referred to as Sensitivity or TP
rate, gauges how well the model identifies all
genuine positive cases. It is determined by the ratio
of TP to the total of TP and FN, and is expressed as:

R¼ TP
ðTPþ FNÞ ð17Þ

F1-measure: The F1-measure, also known as the F1-
score, integrates Precision and Recall into a unified
evaluation metric. It is calculated as follows:

F1¼2)P)R
ðPþRÞ ð18Þ

This metric, together with the confusion matrix,
provides a thorough assessment of the model's
intrusion detection efficacy, balancing precision and
recall. A high F1-score reflects a robust model that
effectively detects intrusions while reducing false
alarms.
Figures 2 and 3 illustrate the confusion matrices

for binary classification where the task is to differ-
entiate between DDoS attacks and Normal traffic.
Specifically, Fig. 2 presents the results of RF, DT,
KNN, and XGBoost classifiers in distinguishing DoS
from Normal traffic, while Fig. 3 focuses on the same
classifiers applied to DDoS versus Normal traffic.
The matrices demonstrate how each model

Table 1. Confusion matrix.

Actual Predicted

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Fig. 2. Confusion matrix for binary classification ML techniques DDoS/
Normal.

Fig. 3. Confusion matrix for binary classification ML techniques DDoS/
Normal.
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performs in terms of true positives, false positives,
false negatives, and true negatives, with the majority
of instances being correctly classified, as indicated
by the high values along the diagonal. Fig. 4 extends
the analysis to multi-class classification, where the
task is to distinguish among three classes: Normal,
DoS, and DDoS traffic. The confusion matrices for
RF, DT, KNN, and XGBoost classifiers in this more
complex scenario reveal that while the classifiers
generally perform well, the presence of additional
classes introduces more misclassification, particu-
larly between DoS and DDoS attacks. The matrices
in Fig. 4 indicate that some models have difficulty
distinguishing between the two types of attacks, as
evidenced by the nonzero values in the off-diagonal
elements, particularly in the RF and XGBoost
models. These figures collectively illustrate the
effectiveness and challenges of applying different
ML techniques to both binary and multi-class clas-
sification tasks in the context of IoT network
security.

5.3. Feature selection methods

In the process of feature selection for each cleaned
dataset, referred to as Ci, a key procedure is
implemented. This involves the careful selection of
features to obtain a specific subset that meets the
objectives. During this stage, the variable Si is
introduced, representing the set of features that
have been meticulously chosen.
During this stage, four distinct feature selection

techniques are independently applied to each
dataset. The goal is to achieve optimal feature
alignment between the datasets before combining
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Fig. 4. Confusion matrix for Multi Classification ML.
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them into a comprehensive dataset. This process
aims to reduce the number of features, thereby
decreasing the volume of data for later stages. The
feature selection methods are employed with this
main objective in mind.
The results indicated that the Select Percentile

method excelled compared to others, identifying a
total of 8 matching features, as shown in the
accompanying table. The success of the Select
Percentile method highlights its efficiency in feature
selection. These 8 features are crucial as they align
well between datasets, facilitating smooth data inte-
gration. This alignment aids subsequent analysis
phases, ensuring the dataset focuses on key attri-
butes. The effectiveness of Select Percentile demon-
strates its ability to identify and prioritize the most
informative features, contributing to the project's
success. This achievement reflects the precision of
the feature selection process, ensuring that subse-
quent analyses are conducted on a refined dataset.
In the study, a Binary and Multiclassification

experiment was conducted to analyze and
compare the model's performance under various
conditions. This experiment involved classifying
data into three specific categories:

(a) Binary Classification: Normal, and DoS.
(b) Binary Classification: Normal, and DDoS.
(c) Multi-Classification: Normal, Dos, and DDoS.

Figure 5.

These features had a significant impact on binary
classification, serving as major factors in decision-
making. Conversely, these features had a lesser
impact in multi-classification scenarios. In
response, the model was strategically adjusted.
Features critical to binary classification were
deliberately excluded from both the training and
testing phases to mitigate bias and reduce undue
focus, thereby aiming to enhance overall accuracy
and reliability. The IRM-BFS achieved an accuracy
between 98.38 and 100%, as detailed in Tables 2e4,
reflecting a notable performance improvement.
The following section meticulously documents the
refinement process and outcomes of the model (see
Table 3).
Table 5 provides a comparative analysis of IRM-

BFS with other studies, covering aspects such as
datasets, data sampling methods, algorithms,
feature counts, accuracy, and classification types.
This comparison highlights IRM-BFS's strengths
and distinguishes it from similar research, offering
insights into the field of intrusion detection and the
effectiveness of various methods.
In conclusion, the model effectively integrated two

diverse datasets and optimized feature selection,
resulting in a refined dataset suitable for analysis.
The systematic evaluation of machine learning
techniques, classification categories, and feature
impact contributed to the model's accuracy and
reliability, addressing the initial research
challenges.

Fig. 5. Imbalance reduction model based on feature selection Classification Accuracy.
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Table 4. Imbalance reduction model based on feature selection multi classification accuracy.

ML Precision Recall F1-score Accuracy

KNN DT XGBoost RFs KNN DT XGBoost RFs KNN DT XGBoost RFs KNN DT XGBoost RFs

DDoS 99.99% 99.99% 99.99% 99.99% 99.98% 99.98% 99.92% 100% 99.98% 99.99% 99.96% 99.99% 99.90% 99.84% 98.75% 99.85%
DoS 99.89% 99.75% 98.39% 99.78% 99.91% 99.91% 99.00% 99.91% 99.90% 99.83% 98.69% 99.84%
Normal 99.91% 99.91% 98.99% 99.91% 99.89% 99.75% 98.38% 99.78% 99.90% 99.83% 98.68% 99.85%

Table 3. Imbalance reduction model based on feature selection binary classification results for DDoS and Normal classes.

ML Precision Recall F1-score Accuracy

KNN DT XGBoost RFs KNN DT XGBoost RFs KNN DT XGBoost RFs KNN DT XGBoost RFs

DDoS 99.94% 100% 100% 100% 99.99% 99.96% 99.92% 100% 99.91% 99.98% 99.96% 100% 99.98% 99.96% 99.93% 100%
Normal 99.99% 99.96% 99.92% 100% 99.94% 100% 100% 100% 99.91% 99.98% 99.96% 100%

Table 5. Imbalance reduction model based on feature selection comparison with other related techniques.

Technique Algorithm Data Sets Data Sample Features Accuracy Classes

Alkadi et al., [29] BiLSTM UNSW-NB15 Bot-IoT 14,000 pkts Full 99.41 98.91 16
Ibitoye et al., [30] FNN SNN Bot-IoT 20% 10 bests 95 91 5
Larriva et al., [22] MLP UNSW-NB15 10% Full 99.2 NA
PB-DID [15] LSTM Bot-IoT UNSW-NB15 96% 87% 26 96.3 3

DoS/Normal DDoS/Normal Multi Binary and Multi
KNN 99.95 99.98 99.90

Proposed IRM-BFS DT Merged Bot-IoT and UNSW-NB15 96% 87% 6 99.99 99.96 99.84
XGBoost 99.95 99.93 98.75
RF 99.99 100 99.85
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5.4. Conclusion

This study introduces a novel approach to
enhancing the security of IoT networks through the
development of an IRM-BFS. By integrating and
refining features from two prominent datasets, Bot-
IoT and UNSW-NB15, the model successfully ad-
dresses the challenges of data imbalance and
feature relevance in intrusion detection systems.
The application of machine learning techniques,
including DT, RF, KNN, and XGBoost, demon-
strated high accuracy in detecting and classifying
various types of cyberattacks, particularly DoS and
DDoS attacks.
The key contribution of this research lies in its

ability to create a more balanced and representative
dataset by merging multiple datasets and applying
feature selection methods that reduce the potential
for overfitting and improve model robustness. The
model achieved classification accuracy between 98.38
and 100%, underscoring its effectiveness in real-
world scenarios. This work not only highlights the
importance of feature selection and dataset integra-
tion in improving intrusion detection but also sets
the stage for future advancements, including the
incorporation of deep learning techniques and real-
time data processing to further enhance IoT network
security.
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