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Abstract

We examine different methods to estimate the parameters of a lifetime model represented by a mixture of Weibull and
Gompertz distributions, based on Type-I censoring. We derive Bayes estimators with a variety of loss functions,
including symmetric Squared Error, asymmetric Linear Exponential, and General Entropy, utilizing both informative
and noninformative priors. We also go over how to create the model's two-sample Bayesian prediction intervals. To
demonstrate these methods, we provide computational results through Monte Carlo simulations and real data.
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1. Introduction

L ifetime distributions have recently become of

great importance under censoring schemes due
to the extensive applications which contribute in
different domains. In many life testing and reliability
experiments, experimenters are unable to gather
complete information or failure times for all experi-
mental units. However, there are several statuses in
which items are lost from the test before failure.
Gupta [1], compared two types of controlled samples,
when the experiment ends after observing a pre-
determined proportion of observations and also at
determined fixed points. The obtained data of such
experimenters is known as the censored data (See
Balakrishnan et al. [2]). The order statistics from a wide
range of distributions using Bayesian methods was
presented Mohie El-Din et al. [3]. A new study in two-
sample Bayesian prediction intervals of generalized
order statistics based on multiply type- II censored
data was introduced by Mohie El-Din et al. [4]. Sadek
[5] introduced a study on Bayesian prediction utilizing

hybrid Type-I censored data drawn from the general
distribution class. Mohie El-Din et al. [6], studied the
statistical inference of the Pareto distribution based
on progressive type-I hybrid censoring scheme.
These censoring schemes include some obstacles, as
these only allow to removal units at the ultimate
values of experiment (See Soliman [7]).

A failure population was split into two sub-
populations by Mendenhall and Hader [8], each of
which represented a distinct kind of failure. Chen
et al. [9], extended the idea of Berkson and Gage [10],
to become a two-model mixture model for analyzing
cancer survival data. Gordon [11,12] proposed that a
mixture of two subpopulations may be utilized to
represent the survival function of cancer patients
receiving treatment. He modeled the survival time
distribution of both subpopulations using the
Gompertz distribution. Masuyama [13] utilized a
mixture of two gamma distributions for rheumatoid
arthritis. Radhakrishna et al. [14], derived both
moment and maximum likelihood estimators for the
unknown parameters of a two-component mixture
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of the generalized gamma distribution. Ahmed et al.
[15] obtained approximate Bayes estimators for the
parameters of a mixture of two Weibull distribu-
tions under type-II censoring. Jaheen [16], derived
prediction bounds for the s™ future observation
under a mixture of a two-component Gompertz
lifetime model. Also, Jaheen [17] addressed the issue
of estimating the parameters of a finite mixture of
two exponential distributions using record statistics.
Erisoglu et al. [18], suggested another mixture that
consists of two different distributions to model
heterogeneous survival data. Mixture of Burr type
XII distribution was offered by Ahmed et al. [19].
This paper aims to utilize Bayesian methodology to
estimate parameters and derive two-sample pre-
diction bounds for future observations based on the
proposed model, considering Type-I censoring. The
subsequent sections are structured as follows: Sec-
tion 2 introduces the population and the model.
Section 3 delves into Bayesian estimation. Section 4
presents Bayesian two-sample prediction. Section 5
conducts a Monte Carlo simulation study to
compare the performance of various parameter
estimation methods and presents real data analysis.
Finally, conclusions are summarized in Section 6.

2. The population and the model

In this section, we present the population and the
model for a mixture of distribution under type-I
censoring. A random variable X is said to have a
mixture of two component Weibull and Gompertz
distribution if its probability density function (pdf)
can be written

=Y i), 1)
j=1

where

filx)=afx" e x>0,00>0,0>0,

fox)=ay &V x>0,0, > 0.

The mixing proportions P; are such that 0 <p; <1,
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The reliability function can be written
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known, the likelihood function (5) reduces to
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3. Bayesian estimation

In this section, we derive Bayesian estimators of
the parameters o1, ap and p of the considered model
under Type-I censoring. Suppose the prior distri-
bution of the parameters w;,a; and p are oq ~
Gamma (a1,b1), ap ~ Gamma (a3,b;), and p ~ Beta
(c,d). Suppose, now, the independence of parame-
ters, the joint distribution prior for ay, e, and p is:

(o, @z, p) = m1(en) w2 (2) s (p), (7)

where
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Then, the joint prior distribution of a1,a; and p
are given
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From Eqgs (6) and (9), that the joint posterior
density function of oy, @, and p is given by
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where ay, a» , b1, by, ¢ and d are the hyper-
parameters. Particularity if a1 = a = by = b, = 0 and
¢ = d = 1, the case of non-informative improper
prior, and are given by
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Then , the joint prior distribution of a4, a; and p can
be written as follows
1
77'(0[1,6(2,}7)0(—0(70[1,0[2 >0,0<p<1. (12)
2

From Eq (6) and (12), that, the joint posterior

density function of oy, @, and p is given by

n—r n _ r
g (ala aZ’p}X) o k;l Z < > pnfkfrz
o \k
(1 o p) r+k 0(;171 a;zfle—aﬂ{;;k e ,azqg;k’
(13)
where
n—r F(rz)
k= (n ) By v L7
2 kz:; k ( 1 2) (¢1k) (¢2k)
and

d’lk—(ny n—r-— )tﬁ>v

Por= (rzz(e"zf —1)+k(€t—1)>,

j=1
Vi=n—k—n+1ly,=nrn+k+1

3.1. Bayes estimator based on squared error loss
function (SE)

The Bayes estimators of a1, ¢ and p based on the
squared error loss function are given by:
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3.2. Bayes estimator based on linear exponential

loss function (LINEX) = 1 In [k 1 Z ( > (W)
LINEXN — 2 1> Y2
The Bayes estimators of a1, a,, and p based on the
linear exponential loss function are given by: F(”l) I'(r2)
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4. Bayesian two-sample prediction

In this part we discuss the Bayesian prediction of
future order statistics. Utilizing observed Type-I
censored. A future sample of size m is randomly
selected, independent of another sample of size n,
from the identical population as described in Eq (1).
Consequently Y; denotes the s ordered statistic in
the future sample of size m where, 1 < s < m. The
s order statistic in a sample of size m represents
the life length of a (m — s+1) out of m system. The
distribution function of Y, the ordered future sam-
ple is given by (See, Arnold et al. [20] and Jaheen
[16]),

[Px(ys|01170¢27l7)}1 [1 —Fx(yslauaz,p)]m

m
[=:

=2 (T) ( ]{1 ) (=1 [R(ys)" "7, (14)

1
s j1=0

where Fx(ys‘oq, on,p) =1 —R(ys) is the distribution
function of the mixture model and R(y;) is the reli-
ability function of the mixture model after replacing
x by y,. Using the binomial expansion for
[R(ys)]™ " as follows:

m—I+j;
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The Bayes predictive probability density function
of the component in a future sample given x is

defined by
1 &) [

£ (o)) = / / / £ (el a2, p) g(er, a2, pl)
da1da2dp,
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where f(ys|aq, a2, p) is the pdf of s component in a
future sample, and g(ay, a2, p|x) the joint posterior

Table 1. Average estimates and corresponding MSE of the parameter oy = 0.2 based on informative and non-informative prior.

Bayes

Noninformative
h=-05

Informative
h=-05

GE

Noninformative
q=-05

Informative
q=-05

LINEX

SE

h=105

q=05 h =05

q=05

Info Noninfo
20 2 0.1002 (0.01491)

T

n

0.0696 (0.0141)
0.1054 (0.0099)
0.0934 (0.1139)
0.1062 (0.0876)
0.0874 (0.0118)
0.1054 (0.0085)

0.0869 (0.01542)
0.1171 (0.00994)
0.0903 (0.01239)

0.0757 (0.0131)
0.1056 (0.0013)
0.0973 (0.0112)
0.1091 (0.0082)
0.0898 (0.0112)
0.1074 (0.0081)

0.0922 (0.0145)
0.1172 (0.0094)
0.0965 (0.0115)
0.1143 (0.0083)
0.0947 (0.0114)
0.1112 (0.0082)

0.0961 (0.0138)
0.122 (0.0087)

0.0943 (0.0139)
0.1235 (0.0088)
0.0972 (0.0118)
0.1143 (0.0085)
0.0946 (0.0116)
0.1112 (0.0082)

0.0993 (0.0127)
0.1221 (0.0084)
0.1004 (0.0107)
0.1165 (0.0078)
0.0969 (0.0103)
0.1128 (0.0083)

0.1011 (0.0128)
0.1236 (0.0085)
0.1023 (0.0108)
0.1171 (0.0079)
0.0974 (0.0105)
0.1132 (0.0084)

0.0952 (0.01527)
0.1224 (0.00862)
0.0969 (0.01092)

3 0.1229 (0.00872)
40 2 0.1008 (0.01081)

0.0972 (0.0117)
0.1137 (0.0084)
0.0942 (0.0115)
0.1108 (0.0081)

0.11140 (0.00885)
0.0924 (0.01226)
0.1091 (0.00873)

0.11405 (0.00717)

0.0944 (0.01152)
0.111 (0.00832)

3 0.1168 (0.00752)
60 2 0.0971 (0.01038)

3 0.113 (0.00713)




Table 2. Average estimates and corresponding MSE of the parameter a; = 0.1 based on informative and noninformative prior.

Bayes
LINEX GE
SE Informative Noninformative Informative Noninformative

n T Info Noninfo q=-05 q=05 q=-05 q=205 h=-05 h=05 h=-05 h=05
20 ¢ 0.1051 (0.00222) 0.1052 (0.00232) 0.1059 (0.0023) 0.1043 (0.00218) 0.1059 (0.00232) 0.1045 (0.00221) 0.0993 (0.09932)  0.1015 (0.09057) 0.0995 (0.00211)  0.0877 (0.00205)

3 0.0737 (0.00143) 0.0727 (0.00145) 0.0734 (0.0015) 0.0726 (0.00145) 0.0731 (0.00146) 0.0723 (0.00145) 0.0673 (0.00168) 0.0573 (0.00135) 0.0672 (0.00171)  0.0571 (0.00139)
40 2 0.1026 (0.00142) 0.1026 (0.00146) 0.1031 (0.0014) 0.1021 (0.00138) 0.103 (0.00145) 0.1021 (0.00142) 0.0986 (0.00135) 0.0903 (0.00134) 0.0983 (0.00136)  0.0902 (0.00135)

3 0.0797 (0.00122) 0.0796 (0.00124) 0.0823 (0.0012) 0.0794 (0.00102) 0.0799 (0.00123) 0.0792 (0.00121) 0.07601 (0.00132) 0.0683 (0.00126) 0.0751 (0.00133)  0.0682 (0.00128)
60 2 0.1035 (0.00092) 0.1035 (0.00093) 0.1038 (0.0009) 0.1033 (0.00093) 0.1037 (0.00096) 0.1032 (0.00094) 0.1012 (0.00091)  0.0965 (0.00087) 0.1012 (0.000912) 0.0963 (0.000878)

3 0.0934 (0.00063) 0.0934 (0.00064) 0.0936 (0.0007) 0.0932 (0.00067) 0.0936 (0.00068) 0.0933 (0.00066) 0.0913 (0.00065) 0.0879 (0.00064) 0.0919 (0.00096) 0.0876

0.00061
Table 3. Average estimates and corresponding MSE of the parameter p = 0.7 based on informative and noninformative prior.
Bayes
LINEX GE
SE Informative Noninformative Informative Noninformative

n T Info Noninfo q=-05 q=205 q=-05 q=05 h=-05 h=05 h=-05 h=05
20 2 0.6831 (0.00347) 0.6812 (0.00453) 0.6835 (0.00351) 0.6862 (0.00031) 0.6734 (0.0054)  0.6798 (0.00241) 0.6815 (0.00041) 0.6826 (0.00037) 0.6772 (0.00981)  0.6792 (0.00881)

3 0.6948 (0.00051) 0.6894 (0.00072) 0.6952 (0.00051) 0.6965 (0.00045) 0.68123 (0.00234) 0.68523 (0.00373) 0.6933 (0.00031) 0.6943 (0.00039) 0.68134 (0.00543) 0.68223 (0.00432)
40 2 0.6849 (0.00341) 0.6811 (0.00512) 0.6844 (0.00042) 0.6837 (0.00035) 0.67751 (0.00734) 0.68051 (0.00673) 0.6825 (0.00033) 0.6835 (0.00036) 0.67098 (0.00851) 0.6889 (0.00581)

3 0.6986 (0.00043) 0.6923 (0.00092) 0.6929 (0.00041) 0.6983 (0.00033) 0.6826 (0.00861) 0.68664 (0.00655) 0.6971 (0.00032) 0.6981 (0.00035) 0.68332 (0.000664) 0.6895 (0.00089)
60 2 0.6981 (0.00114) 0.6825 (0.00314) 0.6974 (0.00023) 0.6986 (0.0001) 0.6882 (0.0065)  0.6899 (0.00523) 0.6975 (0.00089) 0.69721 (0.00058) 0.68843 (0.000941) 0.68771 (0.000755)

3 0.6963 (0.00042) 0.6833 (0.000443) 0.6984 (0.00013) 0.6988 (0.00012) 0.6889 (0.00045) 0.67977 (0.00034) 0.6989 (0.000212) 0.69965 (0.00025) 0.69122 (0.000854) 0.92113 (0.000513)
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density for aj,a; and p. Therefore, Bayesian pre-  ¢.;" =06:0" + ¢y, by =ja(€” — 1)+, ¥ =¥
diction density of Y; for a given value v , is given ook s

00 i +5 ,lﬁ :\0 +7.
PIYs> olx] = [77f" (ys|x)dys RGN

A 100 v % prediction interval for Y; is the given by

1 oo oo
:1—/ / / Fy, (v]on, 0,p)g (0, 002, p|x) deydocydp,
o Jo Jo P[L(x) <Y, <U(x)] =7,
g DLW =7
Substitution of (10) and (16) in (18) we get V\{here the following two .equations are solved to
give L(x) and U(x), respectively:
PlY, >v|x]=1—k*
Ba(y ) Lt a) Dl +a) P[Y, > L(x)] vy and P[Y, > U(x)] 1oy (19)
Z ﬁ(¢1 71//2 ) s\ 7'+ *x\ Tp+dy 2
(¢u)" ™ (#2)
where 5. Simulation study and numerical example
nr m_ 1 m-l4j In this section we give some simulation results in
Z: Z Z Z Z ; this part to compare the performance of various
k=0 I=s jizo Ja estimates on Type-I censored basis. The subsequent
B <n - r> (m> <l ) (m —l—i—jl)( 1y actions were taken into consideration:
- k 1 . . - )
J17 N2 (a) For the parameters, we have considered
- - . oy o (a1, 0,p) = (0.2,0.1,0.7) with § = 2. The values
¥ —¢1v+ 01, ¥, =Vp+j2, b1 = 010" + Pup by =12 of g and h are (0.5,—0.5) for (LINEX) and (GE)
(€ = 1) + o - loss functions. The method of choosing the
o ) hyperparameters values introduced by Ahmadi
Substitution of (13) and (16) in (18), we get et al. [21], (a1 = 0.03,a, = 0.04,b; = 0.2, b, = 0.35,
(1) T(r) ¢ =96.231, and d = 41.167) for informative prior.
p[Y: >vlx]=1—k, 1ZB B 3" ) e In case of noninformative prior, we take {(a; =
(01 )" (62¢) 4y = by = by = 0), (c = d = 1)}. In all these
cases, we take the samples of size n = 20,40, and
where 60 are generated.

Table 4. The informative prior for Ys based on the 95% Bayesian prediction boundaries, lengths, and their simulated coverage probability.

(n, m) Y1 Y4 Ym
(L, U) Length Percent (L, U) Length Percent (L, U) Length Percent
(15, 8) (0.06845, 1.8137) 1.77531 0.819 (0.9449, 3.3409) 2.4960 0.986 (2.3768, 20.5931) 18.2163 0.919
(20, 8) (0.06797, 1.8335)  1.7655 0.839 (0.90448, 3.348) 2.4944 0.987 (2.4315, 25.0693)  22.6378  0.895
(30, 8) (0.08008, 1.8265) 1.7464 0.826 (1.0038, 3.1879) 2.4841 0.987 (2.5026, 28.778) 26.2754 0.875
(50, 8) (0.09002, 1.8204) 1.7303 0.812 (1.0588, 3.1035) 2.4747 0.979 (2.5293, 30.1986) 27.6693 0.878
Y1 Y5 Ym
(15, 10) (0.05692, 1.6208)  1.5938 0.808 (1.00911, 3.3157)  2.3066 0.998 (2.5802, 24.8702)  22.291 0.910
(20, 10) (0.06109, 1.6409) 1.5798 0.766 (1.07743, 3.1766) 2.0992 0.987 (2.6143, 26.816) 24.2016 0.866
(30, 10) (0.07092, 1.6380) 1.5471 0.81 (1.13391, 3.0808) 1.9469 0.987 (2.6852, 30.5792) 27.894 0.823
(50, 10) (0.06091, 1.6626) 1.5017 0.782 (1.16741, 3.0432) 1.8762 0.973 (2.7482, 31.8034) 29.0552 0.768
Y1 Y6 Ym
(15, 12) (0.04897, 1.4660) 1.4970 0.751 (1.07488, 3.2454) 2.1705 0.995 (2.6985, 25.1321) 22.4335 0.852
(20, 12) (0.04470, 1.5139) 1.4692 0.741 (1.1817, 3.0946) 1.9129 0.988 (2.7585, 29.863) 27.1045 0.848
(30, 12) (0.06674, 1.4705) 1.4438 0.751 (1.2264, 3.0440) 1.8175 0.981 (2.8291, 31.4186) 28.5894 0.778
(50, 12) (0.06534, 1.4714) 1.4060 0.742 (1.2507, 2.9858) 1.7350 0.979 (2.9007, 31.9038) 29.003 0.719
Y1 Y7 Ym

(15, 13) (0.03935, 1.4453) 1.4060 0.723 (1.1436, 3.4789) 2.3353 0.996 (2.7522, 25.6551)  22.9027  0.833
(20, 13) (0.04962, 1.4242) 1.3746 0.736 (1.2831, 3.2724) 1.9892 0.978 (2.8262, 29.9419)  27.1156 0.813
(30, 13) (0.05288, 1.4396) 1.3567 0.734 (1.3217, 3.2200) 1.8982 0.985 (2.8934, 31.6058)  28.7123 0.736
(50, 13) (0.06292, 1.4153) 1.3224 0.729 (1.4054, 3.0764) 1.6710 0.968 (2.9655, 31.9806)  29.0151 0.684
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(b) Generate a random number u uniformly

distributed in the interval (0, 1), if u < p, the
observation has been randomly selected from
the first subpopulation; otherwise, if u > p, the
observation has been selected from the second
subpopulation.

(c) Calculate the Bayes estimates of proposed

parameter under informative and non-informa-

tive prior based on different loss function.

(d) To derive Bayesian prediction intervals for
future observations of Y; equation (19) are
solved numerically with v = 0.95

(e) The described steps are iterated 1000 times, and

the averages of the estimates along with the
mean squared errors are computed and dis-
played in (Tables 1-3).

(f) The average lower and upper intervals of Y;

are calculated when s = 2 for even m or ! for
odd m, across various sample sizes n
and different sizes of future samples m. Simu-
lated coverage probabilities and average interval
lengths are presented in (Tables 4 and 5).
The results were obtained by using Mathematica
10.

Table 5. The simulated coverage probability, lengths, and 95% Bayesian prediction ranges for Ys-based noninformative prior.

(mm) Y1 Y4 Ym
(L, U) Length  Percent (L, U) Length  Percent (L, U) Length Percent
(15, 8) (0.07412, 1.9199)  1.8458 0.819 (0.99952, 3.4403) 2.4407 0.984 (2.36872, 18.7678)  16.3991  0.980
(20, 8) (0.08026, 1.8827)  1.8024 0.832 (1.0262, 3.3528) 2.3266 0.981 (2.50903, 25.9091)  23.4001  0.854
(30, 8) (0.09623, 1.8644)  1.7680 0.826 (1.04227, 2.21552)  2.2286 0.975 (2.54061, 28.9641)  26.4235  0.839
(50, 8) (0.09747, 1.8375)  1.7400 0.832 (1.06433, 3.1812) 2.1169 0.972 (257912, 30.6502)  28.071 0.846
Y1 Y5 Ym
(15,10)  (0.06408, 1.7383)  1.6742 0.788 (1.0998, 3.3675) 2.2676 0.986 (2.64996, 18.2361)  15.5861  0.851
(20, 10)  (0.06375, 1.6973)  1.6335 0.792 (1.1239, 3.25392) 2.1301 0.989 (2.69597, 27.932) 25.2361  0.808
(30, 10)  (0.06545, 1.6788)  1.6134 0.782 (1.1640, 3.1898) 2.0258 0.979 (2.72633, 30.8963)  28.17 0.781
(50, 10)  (0.07637, 1.6540)  1.57760  0.790 (1.17485, 3.0960) 1.9212 0.974 (2.77358, 31.8209)  29.0473  0.744
Y1 Y6 Ym
(15,12)  (0.05413, 1.5713) 15172 0.733 (1.18049, 3.3389) 2.1584 0.984 (2.79412, 20.4786)  17.6844  0.824
(20,12) ~ (0.05885, 1.5505)  1.4917 0.772 (1.19667, 3.2539) 2.0572 0.986 (2.83608, 27.5601)  24.724 0.777
(30,12)  (0.06097, 1.5125)  1.4516 0.731 (1.22489, 3.1200) 1.8951 0.978 (2.88359, 31.5684)  28.6848  0.742
(50, 12)  (0.06603, 1.5003)  1.4342 0.732 (1.25311, 3.0518) 1.7987 0.979 (2.91859, 31.9718)  29.0532  0.698
Y1 Y7 Ym
(15,13)  (0.05560, 1.5087)  1.4531 0.763 (1.29163, 3.5190) 2.2274 0.988 (2.84397, 22.6998)  19.8559  0.769
(20, 13)  (0.06328, 1.4708)  1.4075 0.725 (1.32725, 3.3372) 2.0099 0.983 (2.88924, 28.8176)  25.9283  0.726
(30,13)  (0.06283, 1.4449)  1.3820 0.725 (1.38079, 3.2180) 1.8372 0.971 (2.93683, 31.6988)  28.762 0.713
(50, 13)  (0.05988, 1.4473)  1.3815 0.746 (1.41074, 3.1301) 1.7194 0.963 (2.97585, 31.9896)  29.0138  0.667
Table 6. Average estimates associated with a real data set under informative prior.
Parameter Bayes
Loss function
SE LINEX GE
q=05 q=-05 q=1 q=-1 h =05 h=-05 h=1 h=-1
o 0.0945113 0.0822371 0.0914941 0.0853606 0.0950961 0.0939359  0.0948025  0.0942224  0.0945113
oy 0.000259757  0.000235252  0.000253705 0.000241456  0.000259758 0.00025975 0.00025974 0.00025973  0.00025975
r 0.37502 0.347826 0.368551 0.354981 0.379717 0.370343 0.377351 0.372664 0.37502
Table 7. Average estimates associated with a real data set under a noninformative prior.
Parameter Bayes
Loss function
SE LINEX GE
q=05 q=-05 q=1 q=-1 h=05 h=-05 h=1 h=-1
o 0.0863432  0.0740085 0.0833165 0.0771536 0.0868802 0.0858151 0.0866106  0.0860781 0.0863432
oy 0.00024505  0.000220549 0.000239006 0.000226758 0.000245055 0.000245054 0.00024504 0.000245053 0.00024505
4 0.421053 0.388889 0.413511 0.397459 0.427176 0.41499 0.424107 0.418013 0.421053
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Table 8. 95% Bayesian prediction bounds of and its lengths Ys, length of the Bayesian prediction in case informative prior.
(n, m) Y1 Y4 Ym
(L, U) Length (L, U) Length (L, U) Length
(29, 8) (0.1684, 8.8445) 8.6761 (3.2331, 10.9303) 7.6572 (10.0454, 22.7782) 12.7328
Y1 Y5 Ym
(29, 10) (0.1427, 8.2219) 8.0789 (3.7607, 10.8728) 7.1121 (10.3012, 23.791) 13.3263
Y1 Y6 Ym
(29, 12) (0.1247, 7.5801) 7.4554 (4.1858, 10.8275) 6.6417 (10.477, 24.6225) 14.1455
Y1 Y7 Ym
(29, 13) (0.1175, 7.2501) 7.1326 (5.0359, 10.9458) 5.9099 (10.527, 24.9788) 14.4518
Table 9. 95% Bayesian prediction bounds of and its lengths Ys, length of the Bayesian prediction in case noninformative prior.
(n, m) Y1 Y4 Ym
(L, U) Length (L, U) Length (L, U) Length
(29, 8) (0.1652, 8.8044) 8.6392 (3.0659, 11.0204) 7.9545 (10.042, 25.5163) 15.4743
Y1 Y5 Ym
(29, 10) (0.1401, 8.1364) 7.9963 (3.5348, 10.9614) 7.4266 (10.2933, 25.5688) 15.5755
Y1 Y6 Ym
(29, 12) (0.1224, 7.4505) 7.3281 (3.9039, 10.9127) 7.0088 (10.5115, 27.5833) 17.0718
Y1 Y7 Ym
(29, 13) (0.1153, 7.1035) 6.9882 (4.6317, 11.0395) 6.4078 (10.5868, 27.9938) 17.407

5.1. Numerical example

We provide a numerical example to demonstrate
the methodology for the proposed estimates using
real data. Assume classical real data in Keating [22]
the set of times in operating days, between successive
failures of air conditioning equipment aircraft, is
given by  {3.750,0.417,2.500,7.750,2.547,2.042,
0.583,1.000, 2.333,0.833,3.292,3.500, 1.833,2.458,
1.208,4.917,1.024,6.500,12.917,3.167,1.083, 1.833,
0.958,2.583,5.417, 8.667,2.917,4.208,8.667}. We fitted
the real data, and we noticed that it is fitted well with
our proposed distribution, we also estimated the pa-
rameters, and the parameter came out with the
following values (p = 0.4232, oq =0.26907, «p =
0.01,60 =1.2898). The above type-I censored simu-
lated this data sample of size (n=29) from the
mixture with the fixed T =3, according type-I
censored, it was found that r=17. The type-I
censored sample is given as follows: r; = 0.417,2.500,
2.547,2.024,0.583,1.000,2.333, and r, = 0.833,1.833,
2.458,1.208,1.024,1.083,1.833, 0.958,2.583,2.917. Real
data were used to calculate the Bayes estimates pa-
rameters a1,y and p (Tables 6 and 7) and the 95%
Bayesian prediction interval (Tables 8 and 9).

5.2. Conclusion

This paper addresses the problems in estimating
and predicting outcomes related to the mixture of
Weibull and Gompertz distributions based on type-I
censoring. We conclude by obtaining various

estimators for the proposed parameters through
Bayesian methods, considering both informative
and noninformative prior distributions:

(a) Tables 1—-3 show the performance of Bayes es-
timators obtained under informative prior has
less MSE compared with the noninformative
prior for all loss functions.

(b) For all estimators, it is observed that the value of
the expected MSE of each estimator decreases as
the sample size increases. Also, MSE of all esti-
mators decreases with increase the value of T for
fixed n. Moreover, for fixed n and T as increases,
the MSE decreases as expected.

(c) Tables 4 and 5 illustrate that as the sample size
increases, the lengths of Bayesian prediction
intervals decrease. Consequently, when the
confidence threshold is met, the Bayesian
simulated coverage probability of Ys becomes
one. Conversely, the length of Bayesian predic-
tion intervals increases with s.

(d) In (Tables 8 and 9) we notice that the length of the
Bayesian prediction intervals increases with
increasing s, and also when we fix n with
increasing m, the length of the intervals increases.

Ethics information

None.

Funding

There is no funding source for the research.



36 M.M. Mohie EI-Din et al. / Al-Azhar Bulletin of Science 35 (2024) 27—36

Author contribution

Mostafa Mohammad Mohie El-Din, Amr Fouad
Sadek, Abdulgader Al khadher Al Dugin contrib-
uted to the design and implementation of the
research, to the analysis of the results and to the
writing of the manuscript.

Conflicts of interest

There are no conflicts of interest.

References

[1] Gupta AK. Estimation of mean and standard deviation of a
normal population from a censored sample. Biometrika 1952;
39:260—3.

[2] Balakrishnan N, Kannan N, Lin CT, Ng HKT. Point and in-
terval estimation for Gaussian distribution, based on pro-
gressively type-II censored samples. IEEE Trans Reliab 2003;
52:90-5.

[3] Mohid El-Din MM, Abdel-aty Y, Shafay AR. Bayesian pre-

diction for order, statistics from A general class of distribu-

tions based on left type-II censored data. Int ] Math Comput
2011;13:35—42.

Mohid El-Din MM, Abdel-aty Y, Shafay AR. Two- sample

bayesian prediction intervals of generalized order statistics

based on multiply type II censored data. ] Commun Statis

Theo Methods 2012;41:381—92.

[5] Amr Sadek. Bayesian prediction on the basis of censored
hybrid type-I data from the general class distribution. Am J
Theo Appl Statestics 2016;5:192—201.

[6] Mohid El-Din MM, Shafay AR, Nagy M, Gamal A. Statistical

inference for Pareto distribution based on progressive type-I

hybrid censoring scheme. Int J Comp Appl 2017;178:

975—8887.

Soliman AA. Estimation of parameters of life from progres-

sively censored data using Burr-XII model. IEEE Trans

Reliab 2005;54:34—42.

[4

=

[7

—

[8] Mendenhall W, Hader R]J. Estimation of parameters of mixed
exponentially distributed failure time distributions from
censored life test data. Biometrika 1958;45:504—20.

[9] Chen WC, Hill BM, Greenhouse JB, Fayos JV. Bayesian
analysis of survival curves for cancer patients following
treatment. Bayesian Statistics 1985;2:229—328.

[10] Berkson ], Gage RP. Survival cure for cancer patients
following treatment. ] Am Stat Assoc 1952;47:501—15.

[11] Gordon NH. Application of the theory of finite mixtures for
the estimation ‘cure’ rate of treated cancer patients. Stat Med
1990;9:397—407.

[12] Gordon NH. Maximum likelihood estimation for mixture of
two Gompertz distributions when censoring occurs. Com-
mun Stat Simulat Comput 1990;19:733—47.

[13] Masuyama M. A mixture of two gamma distribution applied
to rheumatoid arthritis. Un Japan Sci Eng Rep Stat Appl Res
1977;24:28/82—31/85.

[14] Radhakrishna C, Dattatreyarao AV, Anjaneyulu GVSR.
Estimation of parameters in a two-component mixture
generalized gamma distribution. Commun Stat Theor
Methods 1992;21:1799—805.

[15] Ahmed KE, Moustafa HM, Abd-Elrahman AM. Approximate
Bayes estimation for mixture of two Weibull distributions
under type-2 censoring. ] Stat Comput Simulation 1997;58:
269—85.

[16] Jaheen ZF. Bayesian prediction under a mixture of two-
component Gompertz lifetime model. Test 2003;12:413—26.

[17] Jaheen ZF. On record statistics from a mixture of two expo-
nential distributions. J Stat Comput Simul 2005;75:1—11.

[18] Erisoglu EM, Erol H. A mixture model of two different dis-
tributions approach to the analysis of heterogeneous survival
data. Int ] Comput Math Sci 2011;5:75—9.

[19] Ahmed KE, Jaheen ZF, Mohammed HS. Bayesian estimation
under a mixture of the Burr type XII distribution and its
reciprocal. ] Stat Comput Simul 2011;81:2121—-30.

[20 ] Arnold BC, Balakrishnan N, Nagaraja HN. A first course in

order statistics. New York: John Wiley and Sons; 1992.

[21] Chrictianmatthes mu-chunwang Pooyan A-A. Choosing
prior hyperparameters: with applications to time-varying
parameter models. 2016. p. 124—36.

[22] Keating JP, Glaser RE, Ketchum NS. Testing hypotheses
about the shape of a gamma distribution. Technometrics
1990;32:67—82.



	The Bayesian Estimation and Prediction Process Applied to a Mixture of Weibull and Gompertz Distributions Based on Type-I censoring
	The Bayesian Estimation and Prediction Process Applied to a Mixture of Weibull and Gompertz Distributions Based on Type-I C ...
	1. Introduction
	2. The population and the model
	3. Bayesian estimation
	3.1. Bayes estimator based on squared error loss function (SE)
	3.2. Bayes estimator based on linear exponential loss function (LINEX)
	3.3. Bayes estimator based on general entropy loss function (GE)

	4. Bayesian two-sample prediction
	5. Simulation study and numerical example
	5.1. Numerical example
	5.2. Conclusion

	Ethics information
	Funding
	Author contribution
	Conflicts of interest
	Conflicts of interest
	References


