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Abstract

The critical inclination orbits are important and desirable for determining space missions. This inclination is a special
value of the inclination of the orbital plane that makes the argument of the perigee staying constant, on average, when some
perturbations are considered. We investigated the quasi-critical inclination problem in the current study. The considered
perturbations include the oblateness and rotation of the planetary satellite (main body), aswell as the gravitational influence
of a third body. The third body is considered to move in a circular orbit. The equations of motion are formulated using the
well-established Delaunay variables. Then the short and long-period terms are then eliminated using the Lie perturbation
approach. Two canonical transformations are affected to obtain the normalized form of the Hamiltonian function of the
dynamical system. Finally, we carried out several numerical explorations for the two planetary satellites Callisto and our
Moon. The presence of the third celestial body significantly impacts the critical inclination value.
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1. Introduction

R esearchers have spent decades examining in
detail the motion of an artificial satellite

about an oblate planet. Their primary attention was
on the impact of the second zonal harmonic, or J2,
which results in a critical inclination value of i ¼
63:43� [1e3]. Orlov [4] was the first person in history
to identify the issue with critical inclination. That
marked the start of this concept. Since certain space
missions require this inclination, it is crucial concept
to artificial satellite theory. Because the eccentricity
and argument of perigee are often constant at crit-
ical inclination, less orbital maintenance procedures
are needed for the orbits [5,6]. To prevent eccen-
tricity variations and the rotation of the pericenter
argument, critical inclination criteria are applied to
artificial satellites orbiting the Earth, specifically the
Tundra and Molniya orbits [7,8].
Numerous studies about the critical inclination

problem were conducted with the assumption that

the dominant term among the harmonic coefficients
is the second zonal harmonic, denoted as J2. The
earlier presumption holds true for planets like
Earth. In this instance, equatorial ellipticity pertur-
bation, C22, has no effect on the critical inclination.
According to this conventional interpretation, crit-
ical inclination is found by equating the pericenter
argument's variation to zero. Because eccentricity,
semi-major axis, and inclination are the only factors
that affect the fluctuation of the pericenter argument
and are generally constant, this technique is entirely
possible [3,5,9,10]. However, this criterion does not
converge for some celestial bodies because of dis-
turbances of the same order of magnitude as the
oblateness term, J2. Here, the inclination does not
stay constant; instead, it performs long periodic
oscillations. As a result, the idea of a critical incli-
nation loses any relevance, and the idea of quasi-
critical inclinations is presented [3].
Among the research published on this topic, Lara

[11] studied it and found that, in addition to orbit
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size and shape, the degree of oblateness of the
attracting celestial body affects the critical inclina-
tion value. Abd El-Salam and Abd El-Bar [12] ob-
tained different families of critical inclinations for
low-nearly circular lunar orbits. These orbits
disappear rapidly when either the eccentricity axis
or the semi-major changes slightly. Costa et al. [9]
utilize an optimization approach to identify quasi-
critical inclinations for both retrograde and direct
orbits around the Jovian satellite Io.
In this work, we modify the work of the paper [9]

and study the quasi-critical inclination problem
under a third-body perturbation. The second zonal
harmonic J2 of the planetary satellite (main body),
the main body's rotation, and the third-body
attraction are all included in the force model's per-
turbations. We apply the Lie method to normalize
the problem's Hamiltonian. Then we construct the
canonical equations of the current dynamical model.
We performed several numerical examples to show
how the third body affects the critical inclination
values.

2. Hamiltonian formalism

We consider the motion of a spacecraft around a
planetary satellite (main body) under its zonal po-
tential and the attraction induced by a third body.
The spacecraft orbits the primary body in an ellip-
tically inclined orbit with orbital elements
fa; e; i;u;Ug: Where a is the semi-major axis, e the
eccentricity, i the inclination, u the argument of
perigee, and U the longitude of the node of the
orbiter, respectively. A synodic-rotating reference
frame centered at the main body is introduced to
eliminate the time-dependent terms in the Hamil-
tonian due to the third body. The x-axis continually
points in the direction of the third body, and the
basic reference plane aligns with the main body's
equatorial plane. The third body is assumed to
move along a circular equatorial orbit about the
main body. Then, the Hamiltonian governing the
dynamics of the spacecraft in terms of the canonical
Delaunay variables is [13,14]

H¼HK þHC þHZ þH3b ð1Þ

where HK and HC stands for the Kepler motion and
the effect of Coriolis force respectively. Also, HZ and
H3b for the gravitational potential of the planetary
satellite and the third body attraction. The above
terms in equation (1) are defined by

HK ¼ � m2

2L2
ð2Þ

HC¼ �ucH; ð3Þ

HZ¼m

r

�
RM

r

�2

J2P2 sinðdÞ ð4Þ

H3b¼ � k G ðm0 þm1Þ
r1

X∞
n¼2

�
r
r1

�n

PnðcosJÞ ð5Þ

where k ¼ m1
m0þm1

, and m0; m1 are the masses of the
main and third bodies, respectively. RM represents
the radius of the planetary satellite and m ¼ Gm0 is
its gravitational parameter. r1 is the planetary sat-
ellite-third body distance and r is the radial distance
of the orbiter concerning the main body, while uc is
the rate of rotation of the central body. P2 is the
degree two of Legendre polynomial, d is the space-
craft's latitude concerning the equatorial plane and
J is the angle created by the vectors of the third
body and the spacecraft. To utilize perturbation
theory, we express the current issue using simplistic
action-angle variables fl; g; h;L;G;Hg; where I, g, h
are the mean anomaly, the argument of the perigee,
the argument of the node in the rotating frame,
respectively. The conjugate momenta variables are
L, G, and H. These variables are functions of the
orbital elements of the spacecraft and are defined in
the rotating frame as follows

L¼ ffiffiffiffiffiffi
ma

p
; l¼M

G¼L
ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
; g ¼ u ð6Þ

H¼G cos i; h¼ U�uct

It is noticeable that the order of magnitudes of the
current perturbations is strongly dependent on the
nature of the space mission. Consequently, for a
spacecraft that moves around a planetary satellite,
we may arrange the Hamiltonian of the problem
according to the numerical values of mean motion
values of the spacecraft, n, and the main body, uc:
We assume that the ratio 3 ¼ uc

n is the small
parameter of the problem and that J2 � O�uc

n

�2. So,
the Keplerian part H+ and Coriolis effect HC are
taken as the zero and the first-order terms, respec-
tively. The perturbationsH3b andHz are taken as the
second order terms. Then we can write equation (1)
as a power series in 3 as

H¼
X2
i�0

�
3i

i!

�
Hi ð7Þ

Where H+ ¼ HK;H1 ¼ 1
3HC and H2 ¼ 2

32
ðHz þ H3bÞ.

Using spherical geometry, the angle J is calculated
by
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cosJ¼ cos h cos
�
uþ f

�� cos i sin h sin
�
uþ f

�
Now we can write the Hamiltonian of the

problem as

HK¼ � m2

2L2
ð8Þ

HC¼ �
�m
a

��uc

n

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos i; ð9Þ

HZ¼
�m
a

��a
r

��RM

r

�2

J2P2

�
sin i sin

�
uþ f

�� ð10Þ

H3b¼1
2

�m
a

��uc

n

�2�r
a

�2h
1� 3

�
cos h cos

�
uþ f

�
� cos i sin h sin

�
uþ f

��2i ð11Þ
The periodic terms present in the above

Hamiltonian function are averaged out using Lie-
Hori method in the next section.

3. Perturbation approach

Canonical transformations have been extensively
used to find solutions for Hamiltonian dynamical
systems. In perturbation theory, one considers a
Hamiltonian which consists of a solvable term and a
small additional term. By small we mean that the
effects of the term are small, so that, the motion with
the perturbation does not differ greatly from the
motion without the perturbation. If this is the case,
one can hope to develop an integrable model for
motion, a canonical transformation is employed.
One of the most effective and methodical canonical
methods for resolving canonical differential equa-
tion systems is the Lie transform. It can also be used
for obtaining a deeper qualitative insight into the
dynamical problem by studying the equilibria,
phase flow evolution, and bifurcations [15].
A Lie series transformation 4 of dimension m is

defined as the solution.

x¼xðy;Y; 3Þ ¼
X
i�0

3i

i!
xiðy;YÞ; x0 ¼ ðy;YÞ ¼ y ð12Þ

X¼Xðy;Y; 3Þ ¼
X
i�0

3i

i!
Xiðy;YÞ; X0 ¼ ðy;YÞ ¼ Y ð13Þ

of the differential equations

dx
d3

¼VXWðy;Y; 3Þ ð14Þ

dX
d3

¼ �VxWðy;Y; 3Þ ð15Þ

with the initial conditions

xðy;Y; 3¼0Þ¼y;Xðy;Y; 3¼0Þ ¼ Y;where x;X;y;Y2Rm

W¼
X
i�0

W iþ1ðx;X; 3Þ ð16Þ

Where the transformation generator is denoted by
W. One canonical transformation that transforms a
Hamiltonian is a Lie series transformation.

Hðx;X; 3Þ¼
X
i�0

3i

i!
Hn;0ðx;XÞ ð17Þ

Kðy;Y; 3Þ¼
X
i�0

3i

i!
Hn;0ðy;YÞ ð18Þ

utilizing the relation

Hp;q¼Hpþ1;qþ1 þ
Xp
k¼0

�
p
q

�	Hp�k;q�1;Wkþ1

 ð19Þ

The Lie-Deprit technique looks for the gener-
ator of a Lie series transformation to change an old
Hamiltonian (17) into a fully integrable one (18).
Once the generating function W, is obtained the
classical equations can be used to directly determine
the direct and inverse transformations of 4.

x¼�xþ
X
i�0

3i

i!
Ln

Wð�xÞ ð20Þ

�x¼xþ
X
i�0

3i

i!
Ln

�WðxÞ ð21Þ

X¼ �Xþ
X
i�0

3i

i!
Ln

Wð�XÞ ð22Þ

�X¼Xþ
X
i�0

3i

i!
Ln

�WðXÞ ð23Þ

where LWð�Þ is the Poisson bracket f� ;H0g.

4. Double-averaged problem

We can build the current analytical theory by
using the perturbation technique based on the Hori-
Lie transformation, with the Hamiltonian function
stated as a power series of the small parameter 3.
Therefore, using the canonical transformations

M : ðl; g; h; L;G;HÞ/ðl0; g0; h0; L0;G0;H0Þ we find a
new Hamiltonian function
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H0¼
Xk�1

n¼0

3n

i!
Hn

0ð�;g0;�;L0;G0;H0Þ

þ 3k
X
n�k

3n�k

n!
Hnðl0;g0;h0;L0;G0;H0Þ

The usual procedure to solve our dynamical
system is to transform the Hamiltonian of the
problem to a new one in which all the angle vari-
ables are ignorable. We first use the classical
Delaunay normalization to reduce the problem to
two degrees of freedom. This process averages the
problem over the mean anomaly l for each order of
perturbation, and the fast-rotating terms are elimi-
nated from the Hamiltonian function. In the trans-
formation, we computed the generating function,
Wðl0; g0; h0; L0;G0;H0Þ of the transformation. It is to be
noted that all the new variables are single-primed,
but for the sake of simplicity of writing, we drop the
primes. Then, up to the second order, we obtain

K0¼ � m2

2L2
ð24Þ

K1¼ �uc H ð25Þ

A further reduction is carried out to eliminate the
argument of the perigee, u. Then, the reduced
Hamiltonian function depends only on the argument
of the node and we obtained an integrable one-de-
gree-of-freedom problem. Explicit expressions up to
the second order of the newHamiltonian are given by

KK¼ �uc H� m2

2L2

�
�
G2�3H2

��
G3kL5uc2

�
3G2�5L2

��4J2m6R2
�

16G5m2L3

þ

0
BBBB@
3kL2uc2

�
G2�H2

��
3G2�5L2

�
16G2m2

�45eHkL7uc3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðL2�G2Þ

L4

q
16Gm4

1
CCCCAcosð2hÞ

� 9pkL5uc3
�
G2�H2

��
3G2�5L2

�
sinð2hÞ

16G2m4

ð28Þ

K2¼ 1
32G3m4L3

0
@8J2m8R2�G2 � 3H2�

G2 þ2Gkm2L5uc2
�
15ðG�HÞðGþHÞðG� LÞðGþLÞ cos 2u

þ3 cos 2 h�5
�
G2þH2�ðG�LÞðGþLÞcos 2uþðG�HÞðGþHÞ�3G2 � 5L2�

� �3G2 � 5L2��G2 � 6GH sin 2 h sin 2u� 3H2��þ9GkL8uc3

0
@2GH cos 2 h

0
@2p

�
3G2 � 5L2

�
sin 2u

� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�G2

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
�
L2 �G2

�qr 1
A þ sin 2 h

0
@� 10p

�
G2þH2

�ðG� LÞðGþLÞcos 2u� ðG�HÞðGþHÞ

� 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�G2

L2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
�
L2 �G2

�q
sin 2uþ6pG2 � 10pL2

1
A
1
A
1
A

ð26Þ

W2¼
J 2m2R2

�
f �M

��
G2 � 3H2

�
8G5

�
J2m2R2

ffiffiffiffiffiffiffiffiffiffi
L2�G2

L2

q �
3G2 cos 2u� 2G2 � 3H2 cos 2uþ 6H2

�
sin f

16G5

� 3J2m2R2
�
G2 �H2

�
cos 2u sin 2 f

16G5
�
J2m2R2

�
G2 �H2

� ffiffiffiffiffiffiffiffiffiffi
L2�G2

L2

q
16G5

� cos 2u sin 3 f

�
3J2m2R2 cos f

�
G2 �H2

� ffiffiffiffiffiffiffiffiffiffi
L2�G2

L2

q
sin 2u

16G5
� 3J2m2R2

�
G2 �H2

�
sin 2u cos 2 f

16G5

�
J2 m2R2

�
G2 �H2

� ffiffiffiffiffiffiffiffiffiffi
L2�G2

L2

q
16G5

sin 2u cos 3 f

ð27Þ
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Now the transformed Hamiltonian is of one degree
of freedom in the longitude of the node, h, and there
is no need for further normalization

5. Canonical equations

After ignoring the terms dependent on l and u,
the Hamiltonian of the problem is only a function of
h; and the three action variables L;G; and H (or a; e;
and i). Using Hamilton's equations, the mean rates
of the Delaunay elements ðLi; liÞ resulting from the
third body attraction and the zonal potential are
expressed as follows.

_l¼vKK
vL

; _L¼ vKK
vl

ð29Þ

To calculate the secular rates for the Delaunay
elements, the following partial derivatives must be
taken into account:

v

vL
¼ va
vL

v

va
þ ve
vL

v

ve
ð30Þ

v

vG
¼ va
vG

v

va
þ ve
vG

v

ve
ð31Þ

v

vH
¼ vi
vH

v

vi
ð32Þ

The averaged canonical equations of motion of
a spacecraft orbiting the primary body are obtained
by using the above partial derivatives.

_l¼m2

L3
� k L uc2

�
G2 � 3H2

��
3G2 � 10L2

�
8G2m2

� 3 J2 m4R2
�
G2 � 3H2

�
4G5L4

þ

0
BBBBB@
3kLuc2ðG�HÞðGþHÞ�3G2 � 5L2

�
8G2m2

� 15 kL3uc2ðG�HÞðGþHÞ
8G2m2

� 315 e HkL6uc3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðL2�G2Þ

L4

q
16Gm4

�
45 eHkL7uc3

 
2G2

L3 � 4G2ðL2�G2Þ
L5

!

32Gm4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðL2�G2Þ

L4

q
1
CCCCCAcos 2 h

� sin 2 h
�
45pkuc3ðG�HÞðGþHÞ�3G2L4 � 7L6

��
16G2m4

ð33Þ

_g¼ � 6J2m6R2
�
G2 � 5H2

�þ 3G3kL5uc2
�
G4 � 5H2L2

�
8G6m2L3

þ

3 kL2uc2

0
BBBB@15 e G2HL ucffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2ðL2�G2Þ
L4

q � 10H2m2L2

G3 þ 6Gm2

1
CCCCA

16 m4
cos 2 h

þ 9pkL5uc3
�
5H2L2 � 3G4

�
8G3m4

sin 2 h ð34Þ

_h¼GkL5uc2
�
3G2�5L2

�ð6H�6H cos 2hÞ� 24H J2 m6R2

G2

16G3m2L3
�uc

þ
9kL5uc3

0
@2pH

�
3G2�5L2

�
sin 2h�5eGL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðL2�G2Þ

L4

q
cos 2h

1
A

16G2m4

ð35Þ
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_L¼vKK
vl

¼ 0 ð36Þ

_G¼vKK
vg

¼ 0 ð37Þ

6. Quasi-critical inclinations

The constant value of inclination i from equation
(34) for which the time derivative of the perigee g
argument is zero is known as the critical inclination
in the second zonal model. Which means that if an
orbit has a critical inclination, then ct gðtÞ ¼ g05
_g ¼ 0: This value is a fixed point for a phase portrait
of ðh; HÞ. Nonetheless, equation provides the real
variation of the perigee argument for the dynamical
model under consideration (34). Thus, two curves
may exist: one is constant, which is the desired
curve and represents the condition for the existence
of a critical inclination, _g ¼ 0, and the one that de-
scribes the actual variation of the argument of
perigee, equation (34). Here, zero is the only desired
outcome for the time average of the difference be-
tween the intended and actual curves. for T > 0; and
is finite [9]. Therefore,

1
T

Zt0þT

t0

�
dg
dt ½actual�

� dg
dt ½desired�

�
dt¼05

Zt0þT

t0

�
dg
dt ½actual�

�
dt¼0

ð39Þ

In the actual variation case, the time evolution of H
and h will change the inclination and the argument
of perigee, so we cannot use the term ‘critical ‘value
of inclination. Equation (39) has many problems,
first, T is unknown. Second, equation (34) is coupled
with equations (35) and (38). Finally, it is necessary
to determine the values of the quantities h and H at
each instant of time, to solve equation (39). To
overcome such problems, we should first solve the
equation coupling in (34). The Hamiltonian func-
tion, equation (28), defines implicitly HðtÞ as a
function of hðtÞ by the function

HðtÞ¼ xðhðtÞÞ

¼�cþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ ðc1 � a1 cosð2hÞÞðb1 cosð2 hÞ þ dÞp

b1 cos ð2 hÞ þ d

ð40Þ

where

a1¼
3
�
G3kL5uc2

�
3G2 � 5L2

�þ 8m6R2
�

4G3m2L332

b1¼
3
�
G3kL5uc2

�
3G2 � 5L2

�þ 8m6R2
�

4G5m2L332

c¼uc
3

d¼�6G3kL5uc2
�
3G2 � 5L2

�� 24J2m6R2

8G5m2L332

c1¼a1 sinð2hÞ þ b1H2 cosð2hÞ þ 2c Hþ d H2

Now if we replace equation (40) into equations
(33)e(38), the system of ordinary differential equa-
tions is just a function of hðtÞ and automatically
decoupled. The system is separable since L and G
are constants and g is a neglected Coordinate. Thus,
equations (35) and (38) completely define h and H;
and these variables in turn are used to obtain the
time variation of l and g. Then, equations (35) and
(38) constitute an independent system of differential
equations from the rest of the equations:

_h¼F2ðh;HÞ; _H¼F3ðh;HÞ; ½hð0Þ;Hð0Þ�¼ðh0;H0Þ ð41Þ

7. Numerical results

After the Lie method perturbation technique is
used to eliminate short and long-period terms from
the Hamiltonian of the problem, we are ready to
study the quasi-critical inclination for a spacecraft
orbiting planetary satellites. In our computations,
we considered the gravity field of the main body up

_H¼�
9kL5uc3

0
@10eGHL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðL2�G2Þ

L4

q
sinð2hÞ�2p

�
G2�H2

�1A
16G2m4

�
3G2�5L2

�
cos2hþ3kL2uc2

�
G2�H2

��
3G2�5L2

�
sin2h

8G2m2

ð38Þ
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to the second zonal harmonic J2, perturbations due
to a third body that moves in a circular orbit, besides
the rotation of the planetary satellite.
To explore the problem under concern let us

consider the moderate-altitude semi-major axes
values, for a satellite orbiting the planetary satellite
Callisto, a ¼ 4000 km; a ¼ 4500 km; and a ¼ 5000 km:
Figs. 1 and 2 show the inclination variations in the
direct and retrograde cases, respectively. The sim-
ulations are performed for some selected semi-
major axes around Callisto, with initial eccentricity
e ¼ 0:03 for direct orbit, and e ¼ 0:1 for the retro-
grade one. The ascending node values are between
½0; 2p�. Through several carried-out simulations, it
can be noticed that direct and retrograde quasi-
critical inclinations oscillate near the classical critical
inclination value Ic (black line). The amplitude of
variations does not exceed a few degrees around the
classical value. It is observed that the quasi-critical
inclinations have larger amplitudes in higher orbits
above Callisto. This is because the orbits closest to

the third body are heavily impacted by its
perturbation.
Similarly in Figs. 3 and 4, for a lunar orbiter, we

considered some selected semi-major axes a ¼
2500 km, a ¼ 3000 km; and a ¼ 3200 km. The initial
eccentricity for both the direct and the retrograde
orbits is e ¼ 0:03: We also found that, as in Callisto's
case, the variation in the inclination increases as the
altitude of the lunar orbiter increases. As the alti-
tude of the lunar orbiter increases more and more,
the situation will be complicated, and the curves
representing the variations will be discontinuous.

8. Conclusion

The issue of critical inclination is one of the
important topics in the history of spacecraft
dynamics. As a result, this topic has attracted the
interest of numerous researchers who have inves-
tigated it from different perspectives. In the current
work, we studied the critical inclination problem in
the canonical perturbation theory frame of work.

Fig. 1. Critical inclinations for Callisto direct orbits.

Fig. 2. Critical inclinations for Callisto retrograde orbits.

Fig. 3. Critical inclinations for Moon direct orbits.

Fig. 4. Critical inclinations for Retrograde Moon orbits.
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We constructed the Hamiltonian function of the
motion of a probe orbiting a planetary satellite in
terms of the Delaunay variables. In addition to the
third body's attraction, the oblateness of the plane-
tary satellite is included in the force model. To
simplify the dynamics of the problem, we doubly
averaged the Hamiltonian by removing two of the
angle variables. For example, we applied the current
theory to a spacecraft moving around a planetary
satellite. Several simulations are performed at
different semi-major axes. We found that the critical
inclination value is changed due to the perturba-
tions considered. Moreover, we found that the
variation in the critical inclination increases as the
altitude of the orbiter increases.
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