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Abstract

Motivated by certain results known from the literature, in our work we give several new inequalities for C-monotone
functions with respect to (q,w)-Hahn difference operator. If w = 0, we obtain new inequalities for C-monotone functions.
On the other hand, if w = 0,4—1, our results reduce to integral inequalities known from the literature.
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1. Introduction

I n 1995, Heinig and Maligranda [1], established
that if » > 0 decreases on (a,b) and { > 0 in-
creases on (a,b) with {(a) =0and — o0 <a<b < oo,
then the inequality

/ﬂ L) < ( / bv*f(g)dmg)}f

holds for every y&(0,1], while for 1 <y <oo the
inequality is reversed. It has been also shown that
when v increases or (a,b) and { decreases on (a,b)
with {(b) = 0, then holds the inequality

/ " N-C(9)] < ( / h v*(g)d[—@(g)]f

where y €(0, 1]. In the same paper, Heinig and
Maligranda generalized (1.1) and established that
when 0<p < g<oo, and f,g are non negative func-
tions, then there is a constant D > 0 since the inequality

Uowf@vq(g)dgr =P Uo s (€>v”<z)dc} .

relates all non negative decreased functions v if and
only if the inequality

(1.1)

(1.2)

(1.3)

| Tf(c)dgr <o| [ Tg(g)d;r,

holds for all ©>0. In addition, they also established
that inequality (1.3) holds for all non negative
increasing functions » and 0 <p < g < o, if and only
if the relation holds for all ©> 0.

[ s <o] o]

In 1997, Pecaric et al. [2], extended the results of
[1] to the case of C-monotone functions. Recall that
if s < v implies v(t) < CV(s), for all s, T [a, b], then v
is C-decreasing function on [4,b]. On the other hand,
if s < implies v(s) < CV(1) s,t€[a, b], then v is C-
increasing. Clearly, if C = 1, then the notion of C-
monotonicity reduces to the usual monotonicity.
Some other type inequalities can be found in [3—6].

Pecari¢ et al. [2], generalized (1.1) and established
that if 6 : [0,00) — R is a concave, non negative and
differentiable function such that #(0) =0, » be C-
decreasing with C > 1 and { increases on [4,b], such
that {(a) = 0, then holds the inequality

0<c /uby(s)dc(q)) <C /ubﬁ’[y(g)C(g)]y(g)dC(g) (1.4)
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In addition, let » be C-increases with C > 1 and ¢
increases on [a, b], {(a) =0. Then, the following
inequality holds

e(}: / bv@d:(g)) = VL OW(E)

a (1.5)

Analogous results have been derived for the case
of a decreasing function. More precisely, let » be C-
increases, C > 1, { decreases on [a,b] and {(b) = 0.
Then holds the inequality

o(c [ vod-s01) <c [ bemomod-ze)
(1.6)

while for C-decreasing function », C > 1, { decreases
on [a,b] and {(b) = 0, holds the inequality

9(%/ V(s)d[—C(@)])z%/ 0'[v()2(<)w()d[—Z ().

u (1.7)

In recent decades, great importance has been
placed for proving discrete equivalents to the
related continuous results in a variety of subjects of
analysis. One of the reasons for the increasing
attention in the discrete case is because discrete
operators might behave quite differently than their
continuous equivalent. In our work, we shall
discrete inequalities as special cases of the results
with the Hahn calculus.

Our purpose in this work is to expand inequality.
(1.1), (1.2), (1.4), (1.5), (1.6) and (1.7) via (g, w)-Hahn
difference operator. In particular, we will employ
the corresponding chain rule formula as well as the
basic properties of C-Monotone functions. Of
course, the results that we will derive contain clas-
sical results and the usual monotonicity.

The work is organized as follows: in Section 2, we
give fundamental definitions and notions related to
the Hahn calculus, which will be important in
proving our major conclusions. In Section 3, we
extend inequalities (1.1), (1.2), (1.4), (1.5), (1.6) and
(1.7) via (g, w)-Hahn difference operator. It turns out
that if ® = 0 we obtain essentially new relations,
while for v = 0, g—1, our results reduce to in-
equalities presented in this introduction.

2. Preliminaries and lemmas

This section introduces the Hahn calculus, intro-
duced in [7,8]. If g€(0,1), >0 be fixed, wo:= w/
(1— g), and I be an interval of R contains wy.
Consider h(t) : = gt + w,t€I. Both k(1) and h~ (7).

In the g-setting, the values wg suggest that © = 0. In
particular

wo=lim (heho--oht)(v).

k—times
The inverse h(t) is h™1(z) = (v — w)/g,t€I. The g,
w-Hahn difference operator developed by Hahn in
[9] may be presented as follows.
Definition 1. Consider u, a function defined on I
Hahn difference operator can be represented as
follows:

u(gr+ w) —u(x)
D, u(t): = (qt+w)—t

1 (wy),T = wy.

, TF Wy,

Assume u is differentiable at wg. We refer to D, ,u, as
the q,w-derivative of u, then u is q,w-differentiable
throughout I, if Dy u(wo) exists.

Note that

E%D*“’u(ﬂ =Dgu(r),

q}%g}roD””“’u(T) =u'(7).

Taking into consideration | and 1, which repre-
sents limitations from left and right at finite points.
It is simple to demonstrate u, v is g, w-differentiable
at t<], then

Dy (ot + ) () = aDy ,1(7) + 8Dy, 0(7), 0, BEC,

Dy (uv)(7) = Dy, (u(7))0(7) +(q7+ ) Dy 08 (),

u _D .,m(u(T))U(T) — M(T)D ‘O)U(T)
Dy, (5) (2) == v(z)o(q7 + o) q |

The last identity v(t)v(gt + w)#0, can be ob-
tained [7]. In [7], the right inverse for D, is defined
in terms of Jackson-Norlund sums as shown in [10].

Given g, b€], the g, w -integral of u from a to b is
defined as

b b a
/u(r)dqrwft: :/ u(’c)dq‘wt—/ u(t)d, .,

/m:u(r)dqw: =(c(1—q) —w) iqku(sthw[k}q),gel

: (2.1)

Assuming that the sequence convergence at ¢ = a

and ¢ = b. The g-number is expressed as
(K] g = %, where k€ Ny. In this situation, u is called

g, w-integrable on [a,b]. The sum on the right side of
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(2.1) is called the Jackson-Norlund sum. Refer to [10]
to learn more about the relation between Norlund
sums and difference operators. According to [7], the
basic theorem of q,w-calculus states thatletu : [ — R
be continuous at wy,

U(r) : :/ u(g)dgws, TEI

Then U be continuous at wg. Furthermore,

D, ,U(7) exists for every t€I and
D, ,U(7)=u(r)

Conversely

b
/ D, u(v)dy,t=u(b) —u(a),foralla,bel.

Hence, the g, w-integration by parts for contin-
uous functions u, v are explained in [7,11].

b
/ () D40 (¥)dy = u(%)0(v)|

/ qu

Lemma 1. [7]. If s€l,s>wo,u and v be (q,
w)-integrable on I, then for a, be {sq* + wlk], I

we have
b
< / u(%)|d, e

b
/ u(t)dy,v

Consequently, if [v(t)| > 0 for all t€ {sq* + a)[k]q}oo

k=0’
then for all a, be{sg* +w[k]q};:°:0 the inequalities
holds.

b b
/v(r)dq‘&;czo and /v

Theorem 1. [12]. (Chain Rule involving Hahn-
differential operator). If v : | = R be continuous and q,
w-differentiable and u:R—R be continuously
differentiable. Then, there exists ¢ between g7+ w
and 1, we get
Dy, (uev)(t)=u'(v(c))Dy.v(T) (2.2)

Lemma 2. Let u, v:I—R be g, w-integrable on
I,keR and a,b,c€1. Then

@) [ u(t)dg.t =0;
Gi) [7ku(v)dy v =k [7 u(ft)d
Gi)) [Pu(v)dy v = — [f u(t)dy,T
(v) [Pu(v)dy,t = [Cu(t)d M+ [Pu
© [P((r) + 0(x)dg T = fju(w)dq,ww
f: v(t)dg ..

a

(g7 +w)d, T, a,bEI

9’ k=0’

T)dg,T >0

q}w't;

q LY

The H ¢ lder's Inequality plays a fundamental role
in the field of mathematics. Different variants can be
found in [13—15]. The following inequality is known
as H o lder's Inequality involving Hahn calculus.

Theorem 2. [16]. Let u, v : I — R be Hahn-integrable
onI and a,b€l. Then

oo
{/ o6} (23)

where]>11—]—und —i—l:l.
=1 j

b

u(z)o(x) |u<v>|quw}j

=

3. Main results

If no other information is explicitly mentioned,
we suppose that all the functions are non-negative,
continuous, g, w-differentiable, and integral on I, on
[a, ).

In this section, 6:[0,00) >R refers to a non-
negative, concave, and differentiable function with
6(0) = 0. We are now ready to present and establish
our main conclusions. Our initial conclusion ex-
tends inequalities (1.1) and (1.4) to consider the g,
w-Hahn difference operator.

Theorem 3. Let I be any interval t€1 and a,b € [tq™ +
wlmg]]*_,, v be C-increasing on [a,b] for C>1, ¢
increasing on interval [4,b], and {(a) = 0. Then

0<C/b (9)[Dyt(9)] qus)

<c / (D5, 2(2)] 0 (<) 9))dp e (3.1)
Proof. Let
KzH(C / bv(c) [Dq,wC(c)}de
[ WD s 62
and
e / Dy 5()] Ayt (33)

Therefore, we have from (3.2) and (3.3) that

K(x) e / D, 4(5)

[ (s )C(g)]dq-,wg
(3.4)
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Since v is C-increasing, then we have, for © > ¢,
that »(t) < Crv(c), and then we obtain (note { is
increasing and {(a) = 0) that

/ Co(e) [Dyu(2)]dye > / V(0 [Dy(0)] Ayt
_— / [Dy,£(9)]dy s = w(2)[E(x) — C(a)]

=v(1)¢(7).
(3.5)
Substituting (3.3) into (3.5), we have
E(7) 2 w(7)(5). (3.6)

Using the chain rule formulation (2.2) on the term
6(E(t)), we see that there exists

€ [7,q7+w|,such that

D,,0(E(v)) =6 (E(n))[D,.,E(7)] (3.7)

From (3.3), we obtain ( note { is increasing) that
D, ,E(t)=Cr(7)[D;.%(7)] >0

and then E is increasing on [a,b] and then we have,
for n > 7, that

(3.8)

E(n) > E(t) (3.9)

When 6 is concave on [0,), then 6" <0 (¢ decreases
on [0, ©)) and thus, we notice from (3.9) that

0'(E(n)) < 0'(E(7)) (3.10)
Substitute (3.8) and (3.10) into (3.7) yields
D, ,0(E(v)) < Co(7) [Dy.,L(v)] 0 (E(7)) (3.11)

According to (3.6), ¢'(E(t)) < #&'(v(t)¢(r)), and
then we obtain (note » is positive and { increases)
that

Cr(7) [Dy.,¢(7)] ¢ (E(7)) < Cr(7) [Dy ()]0 (v(7)E(7)),
and thus we obtain from (3.11) that

D, ,0(E(x)) < Cv(7) [Dy.,4(7)] 0 (n(x)%(x)) (3.12)

Form (3.4), we have

D, K(7) =Dy, 0(E(t)) — Cr(t) [Dy,,£(7)] 0 (v()E(7))
(3.13)

Substitute (3.12), into (3.13), we have D, ,K(t) <0,
and therefore K decreases on [a,b]. So b> a, we get
K(b) < K(a). Since 6(0) = 0, we have from (3.2) that

K(a)=6(0) =0.

Then K(b) <0, and we obtain from (3.2), by
putting © = b, then

(foune)

<C / [D,.05()] 0 ()2(9)g s,

that is the inequality (3.1).
Remark 1. If w = 0 in (3.1), we obtain

([ o) e[
0'[v(<)2(<)]dys.

Remark 2. If w = 0,q—1 in (3.1), we get the integral
inequality (1.4) established by Pecaric’ et al. [2]. More-
over, if w = 0,g—1. C=1,0(v) = and O<p <1,
our inequality (3.1) becomes integral inequality (1.1)
established by Heinig and Maligranda [1].

Our next result is a dynamic extension of integral
inequality (1.5) due to Pecari¢ et al. [2].

Theorem 4. Let I be any interval t€I1 and a,
be[tq" + w[my]]>_, v be C-increasing on [a,b], C > 1
and ¢ increases on [a,b], and {(a) = 0. Then

0 <% / e [Dq.w:@)]dwc)

1 b
> C /ﬂ v(s) [Dq,wC(G)] s [V (qg + w)C(qg + (1))] dq,w@-
(3.14)
Proof. Let

k) =0(¢ [ 6 [Drut(o)]des)

7C/ [D,.¢(c)

10'[v(qs+©) (g5 + )] dg.0s,
(3.15)

E(tr)= /T%V(c) [Dg8(5)]dgs (3.16)

Based on (3.15) and (3.16), we may conclude that

K®)=0E) —¢ [ r0[Dyt()]
x [r(gs+ ) (gs+w)]dy 6.

Since v C-increases, we have for ¢ < gv+ w, that
v(¢) < Crv(gt + w), then we have ({ increases and
¢(a) = 0), that

(3.17)



Y.A.A. Elsaid et al. / Al-Azhar Bulletin of Science 35 (2024) 57—64 61

"7‘5+o)1 o
/a C v(s )[ qwg( )] quZ/u V(l]’t—l—w)
X [Dyg.ol(9)]dgus=v(qr+w) /qr © Dzl

=v(gr+w)[¢(gt+w) —(a)]
=v(gr+w){(gr+w),
and thus
1 qrtw
¢ oD < v(ge+o)(ge o)
(3.18)
From (3.16), inequality (3.18) becomes
E(gr+w) <r(gr+w){(gr+w) (3.19)

Using formula (2.2) for a term 6(E(t)), we find
that there exists nE€(r, gt +w|, such that

D,,0(E(v)) =6 (E(n))[D,.,E(7)] (3.20)
From (3.16), we obtain ({ increases) that
D, .E(7) :%v(r) [DWC(T)] >0 (3.21)

and then E increases on [a,b] and then we have n <

qt+ o, that

E(n) <E(gt+w) (3.22)
Since 6 is concave on [0, ), then 6 <0 (¢ de-

creases on [0, c)) and then, we observe from (3.22)

that

0'(E(m) > 0'(E(q7 +)) (3.23)
Substituting (3.21) and (3.23) into (3.20), we get

Dy (E(ge +0)) 2 (1) Dy £(2))0 (B(ge+ )
(3.24)

From (3.19), we have that ¢ (E(q7 +
w)) > 0 (v(gT + w)¢(gT + w)), and then we have (v
be positive and ¢ increases) that

%V(T) [Dy8 ()]0 (E(q7+w))

> EV(T) [D,.L(0)]0 (v(g7+ ) (g7 +w)),

—

thus we obtain from (3.24) that

Dy AE(R)) > (%) Dy (9]0 (v(g7 + ) + £ (g7 +0))

(3.25)

ﬁl*—‘

Form (3.17), we have

D, .K(7) =Dy.0(E(z ))—%V(T) [Dyl()]0 (v(qT+w)
+Z(gr+w))
(3.26)

Substituting (3.25) into (3.26), we find that
D,;.K(t) > 0, K increases on [a, b]. Since b>a, we
may conclude that K(b) > K(a). When 6(0) = 0, we
have from (3.15) that

Then K(b) > 0, and we obtain from (3.15), by putting
T = Db, that

(/ c’ [Dy..,¢(3)] q(u§>

c ﬂ oDy (610 ol + 0)g5-+0) .

that is the desired inequality (3.14).
Remark 3. If w = 0 in (3.14), we obtain

</ c’ )], )>% /abV(s)[DqC(g)]

0'[v(q9)¢ (qc)] 7S

On the other hand, if v =0,q—1 in (3.14), we obtain
the integral inequality (1.5) proved by Pecari¢ et al. [8].

In the sequel, we establish Hahn calculus ver-
sions of integral inequalities (1.2) and (1.6) from the
Introduction.

Theorem 5. Let I be any interval t€1 and a,
bEe[tq" + w[my]]>_, v be C-increasing on [a, b],
C > 1, ¢ decreases on [a,b], and {(b) = 0. Then

0<c / bl/(g) [Dq,w:(g)}dq,mg) <C / bv(r) (D0 — ()]

0 [r(qs+w)¢(gs+w)]dg.0c
(3.27)
Proof. Let

K(T)Z—H(C/h (¢)[Dgwtls )]dq,o,g)

—c/ [D,,5(0)]0' [p(g+0) £ (q5-+ ) ]dy
(3.28)

and
/CV Dy, — ()]dq-,wg (3.29)

From (3.28) and (3.29), we may conclude that
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)0 [r(q7+w)

C/ (Dyut (&)

C(qg +w)]dgos
(3.30)

For gt+ w <¢, v(gr+w) < Cv(c) implies that ¢
increases and {(b) = 0.

b b

Cr(<)(Dy — £(<))dgs > / v(gT+w)

qT+w
£(s))dq.0s
azro) [ (D

q1+m
=r(gr+w)[-L(b)+L(77+w)]
=r(gr+w){(gr+w).
Substituting (3.29) into (3.31), we get

qt+ow
X (Dgo =
(3.31)

£(5))dg.0s

E'(gr+w) >r(gr+w)l(q7+w) (3.32)
Using formula (2.2) on the term §(E" (7)), we find

that there exists n€ (7, gt + w), so that

D, ,0(E"(v))=0'(E (1))Dy,E () (3.33)
From (3.29), we get ({ decreases) that

D, E (%) = Cv(7) [D, ,L(x)] < (3.34)

then E*(t) decreases on [a,b] and then we have, for
1 < gt + w, that

E'(n)>E

Since 6 is concave function on [0, ), then ' < 0 (¢'

decreases on [0,00)) and then, we observe from (3.35)

that

0(E(n) <0 (E(g7+w)) (3.36)
Substituting (3.34) and (3.36) into (3.33), we get

D, 0(E (g5-+)) > Co(x) [, ] (E' (g +0))

(3.37)

From (3.32), we have that @ (E(qt+
w)) < 0 (v(gT + w)¢(gT + w)), and then we get (v be
positive and { decreases) that

( )[ qo)C( )] ( *(q1+w))
> Cv(7)[Dy (0] 0 (v(q7+0)¢ (g7 +0)),

thus we obtain from (3.37) that

D,,0(E"(t) > Cr(t)[D,.£(7)]0 (v(gt+ )¢ (g7 + w)),

(g7 +w) (3.35)

and then

—D, ,0(E" (7)) <—Cr(7) [Dy.,L(7)]0 (v(q7+0) ¢ (gT+w))

(3.38)
From (3.30), we have
D, .K(t)= —D;.0(E (7))
+ Cr(7)Dy ()0 (v(g7+ w) (g7 + w)) (3.39)

Substituting (3.38) into (3.39), we get D, ,K(t) <0,
and K decreases on [a, b], and b>a, we get
K(b) <K(a). Since 6(0) = 0, we have from (3.28) that

K(b)= — 6(0) =0,

then K(a) > 0, and we obtain from (3.28), by putting

T = a, that
(/ Cv(s)[Dy., — ()]dq.,wG)

gC/bvg Dy, —£(9)]0 [r(gs+ ) (g5 + w) ] dys.

That is the desired inequality (3.27).

Remark 4. If w = 0 in (3.27), we obtain

0 ( /b Cv(s)|D, — C(G)}dqg)
=€ / 10'[v(95)¢(q¢) [ dqs-

Remark 5. If w =0,9—1 in (3.27), we obtain the
inequality (1.6) established by Pecaric’ et al. [8].
In addition, if C =1, and 0(t) =" and 0<p <1, we
obtain the integral inequality (1.2) established by Heinig
and Maligranda [1].
To finish our discussion, we
inequality (1.7).
Theorem 6. Let I be any interval t€l and a,
be[tq™ + w[my]]>>_,, v be C-decreasing on [a,b], C >
1 and ¢ decreases on [a,b] and {(b) = 0. Then

can extension

1 b
Zc / ¥(¢) [Dygr = £(9)] 0 [(0)E () dg s (3.40)
Proof. Let
1 b
K(t)=—0(= [ v()[Dgo —2(s)]dyus
<C /t q q > (3.41)

£()]0'[v()8(<)]dg 06

1 b
+z [ 6Dy -
d
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b
E(®)= [ 0Dy 4(0)]dyus

Based on (3.41) and (3.42), we may conclude that

(3.42)

b
K(t)= — 0(E* (1)) +% /t v(¢)(Dy0

— ()0 [r()8()ldy.06 (3.43)

Given v be C-decreases, for ¢ > t, we have »(g) <
Cr(t), Consequently, considering that ( decreases
and {(b) = 0), we obtain

b b
| @D =6 dysz [ (Dr =26 dyes
b
- / Dy, — £(2)] g = 1) — £(b) +£(3)]

=v(T)¢(7),
(3.44)
and then
1 b
E/t y(g) [Dq,m - C(g)] dq,mg < V(T):(T) (345)
Substituting (3.42) into (3.45), we get
E'(v) < n(t)¢(3) (3.46)

Using the chain rule formula (2.2) on the
expression 0(E" (1)), we observe that there exists d&
[t,97 + w], so that

D, ,0(E"(v))=0'(E"(d)) [Dy,,E (v)] (3.47)
From (3.42), we obtain ({ decreases) that
D,WE* (T) :%v(fc) [DWC(T)} <0, (3.48)

Given that E*(t) decreases on [a,b)], for d > 7, we
have

E'(d) <E'(7)

(3.49)

Furthermore, since ¢ is concave on [0, ), implying
6 <0 (meaning ¢ decreases on [0, o)), we can
observe from (3.49) that

0'(E'(d)) > 0'(E' (7)) (3.50)
Substituting (3.48) and (3.50) into (3.47), we get

D, ,0(E (t)) < %V(T) [D,.¢(7)]0(E"(7)) (3.51)

From (3.46), we have that ¢'(E"(t)) > 6'(v(7)¢(7)),
and then we obtain ( » be positive and { decreases)
that

1

SH Dyt @]0 (' (2) < 29() Dy L)) (()(R)),

thus we obtain from (3.51) that
* 1 /
Dy 0(E (7)) < zv(7) (D, ¢(0)] 0 (v(7)E(7)),
and then

1

—Dy 0(E*(7)) > —=¢(7) [Dg.£(7)] ¢ (v(v)E(7))

c (3.52)

From (3.43), we have

D, .K(t)= —D,,0(E () + !

g0 (OIDgL()0 (v(7)E(v))

(3.53)

Substituting (3.52) into (3.53), we note that
D;.K(t) > 0, and K increases on [a,b]. When b>a,
we see that K(b) > Ka). Since 6(0) = 0, we have from
(3.41) that

K(b)= —6(0) =0,

then K(a) < 0, we get from (3.41), by putting © = a,
that

(% [ Iy 5

b
Jr% /u v(¢) [qu - Z(C)] 0/ [v(c)¢(<)]dg s <0,

and thus

o2 [ ) Dy 565

b
2% / ¥(s)[Dgo = £(6)]0'[p()8 ()08,

that is the desired inequality (3.40).

Remark 6. If w—0 in (3.40), we obtain
b
0(% / v(c)[D, — C(g)]dﬁ)
b
>¢ [ 0D, -0

Furthermore, if w—0,4—1 in (3.40), we obtain
inequality (1.7) established by Pecaric’ et al. [2].
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4. Conclusion

In this manuscript we discussed some new in-
vestigations of the Hardy inequality and its com-
panion inequalities via (g9, w)-Hahn difference
operator. These inequalities have certain condi-
tions that have not been studied before. For
example, in Theorem 3, we are dealing with
several new inequalities for C-monotone functions
concerning (g, w)-Hahn difference operator. Be-
sides that, to obtain some new inequalities as
special cases, we also extended our inequalities to
continuous calculus.
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