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ORIGINAL ARTICLE

Approximating Special Monogenic Functions in

Clifford Analysis

Gamal Farghaly Hassan, Aly Mohamed Saddeek, Amira Adel Atta"

Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

Abstract

This paper deals with the approximation of specific classes of special monogenic function using exponential-derived
and integral bases in Clifford analysis. To underscore the superiority of our results we provide illustrative examples and
applications. These findings results extend existing knowledge from complex and quaternion forms to the context of
Clifford analysis 2000 Mathematics Subject Classification: 30G35, 41A10.
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1. Introduction

he theory of basic sets of polynomials (BPs)
represents a crucial role in numerous branches

of mathematics. It plays an essential role in many
theoretical and practical areas such as partial differ-
ential equations, nonlinear analysis, mathematical
physics, approximation theory, and mathematical
modeling. The scientific basis of the BPs theory was
established in the 20" century [1], see also [2—4]. It
says that if f(z) is any analytic function, then f(z) has
an approximation value by using a base of {P,(z)} as
f(z) ~ 3", an Py(z). It should be noted that the basic
series is a generalization of a Taylor series, where
P,(z) can be Chebyshe, Lagendre, Hermite,
Laguerre, Bessel, Euler, and Bernoulli polynomials
[5-8].

In [1,2], the authors initiated the study of BPs by
considering regions of open and closed disks in one
complex variable. The BPs have been generalized
and extended in many directions [9—12]. One of the
extensions is due to Abul-Ez and Constales, Abul-
Ez, and Abul-Ez [12—14] and Abul-Ez et al. [9].

They presented some results in several domains
(hyperballs, open hyperballs, open balls containing
closed balls, origin, whole space) in Clifford

analysis. Another direction of extensions refers to
Malonek [15], Kishka et al. [10], El-sayed [11],
Kumuyi and Nassif [16], El-sayed and Kishka [17],
they employed appropriate functions in several
complex variables in polycylinderical, hyper-
spherical and hyperelliptical regions. So (BPs) is
explored in two directions: Several Complex Vari-
ables (5.C.V.) and Clifford Analysis. Through S.C.V.,
the theory of BPs are generalized from plane to
spaces of the even dimensions (C" ~ R?*" neN). In
Clifford analysis, BPs extend from plane to spaces of
both even and odd dimensions, as in A, (R™!, m
eN).

In a recent paper, Hassan et al. [18] established a
new approach of BPs of special monogenic poly-
nomials in Fr'echet modules. The derivative of a
complex function is a multifaceted analytical
approach having topological and algebraic aspects.
The derivative of BPs in one complex variable (resp.,
several variables) that are defined for open disks
and closed disks (resp. polycylinderical, hyper-
spherical, and hyperelliptical regions) can be found
in references [17,19,20] (resp., [10,11,16,17,21]).
Recently, the framework of hypercomplex deriva-
tive bases of special monogenic polynomials in
Clifford analysis has emerged as a very powerful
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and important tool in the theory of Clifford algebras
[22,23].

The purpose of this paper is to introduce two
different classes of differential and integral opera-
tors called exponential derived and integral bases.
These operators will be used to deal with special
monogenic polynomials in Clifford analysis. We
deduce the topological properties of such operators
such as convergence, effectiveness, T,-property,
order and type. Finally, we provide some examples
and applications. The results here extend and
improve the corresponding results announced by
[24].

2. Preliminaries

Let R be the set of real numbers. Let E (resp., O)
denote the set of even (resp., odd) integers.

The real Clifford analysis A,, is a 2" -dimensional
algebra with unit defined as follows: Given the
orthogonal basis ey, 1, ..., e, of the linear space A,
(in other words R™). The basis is determined by
eiej + eje; = —20; for i,j = 1,...,m. Let Q be an open
set of A,. If x€A,, then x:=xo+ ) |- eix; where
%€ Rand ¢y = 1. The conjugate of x is X, where x:=
Xo— Y iqeix; as ¢ = —e; for i=1,...,m and e =

2o = 1. |x| is the norm of x and is defined by |x| =

St = \/ﬁ = v/xx. The inverse of x is x ! and
(V x€A,, and x#0). If ;ye A, , then

lxy| < 2™|x| |y| In A, the generalized Cauchy -Rie-
mann operator is defined by D = >"I" je;.> ax (for more
details, see [15,25—27]).

Definition 2.1. Let f™ :Q—A,, m>0 be an
Ay,-valued function. Then f™ is called monogenic If
Df™ = fmD =0 in Q.

is equal to

Definition 2.2. A polynomial P")
monogenic (SMP) iff DP™)
Ay, such that P (x)

(x) is called special
(x) = 0 and there is a;; €
= foj?xfa,-_j, o< 00.

Definition 2.3. The function f™ is called special
monogenic in Q if the following axioms hold:

(1) Q is connected and open subset of A, containing
zero.

(2) The generalization form of the Taylor series of
" near zero (it must exist) is given by f"(x) =
S P (x), where PJ" (x) is SMP.

(%), xE Ay

X) an , where

Definition 2.4. A homogeneous SMP P."
is a function of the form P (x) = p"(

ay € Ay, and p”)(x) is given by

" ol (") ('”Tl)z_k 1
Pn (x):(m)nk;n I TR

where (b); =b(b+1)...

(2.1)
(b+1—-1) and x€A,, be R.

Remark 2.1. The SMP sequence {Pﬁlm> (x)} from an
] (m)(

Appell sequence if it satisfies that jp.
(m)

npnfl(x)'

For further information on monogenic functions,

one can refer to [13,22,27—29].

X) =

Definition 2.5. A unitary left module X over A,
is an abelian group (X, t) with a mapping A,, x X —X;

(Af™)—>2fm  such that for all A,ueX and
fm ¥m e A,, such that the following axioms hold:
D (2 + u)f = M+ uf
@ (wr® = i)
(3) A(Fm) 4 (M) = Af(m) 4 )
@) of ) — 0

A unitary right module can be defined analogously
as follows:

Definition 2.6. A unitary right module X over A,
is an abelian group (X, t) with a mapping X x A, —X;
(Fm 2)—>fm A such that for all A,pEX and
fm M € A,, such that the following axioms hold:

(1)f(’">()t o) = fm 4 fom
@) ~ (s

(3) (f A *f(m)l—k r(m)/\’
(4) f™eg =f(’”).

It should be noted that if X is a field, then a unitary
right (resp. left) module is a linear space and if
Rey = AgC A, then X becomes a real linear space.
In the sequel, all modules will be unitary right
modules.

Let Xg be a unitary right module over A4,,, A func-
tion ||.|| : Xgr — [0, ), is called a seminorm on X, if
it fulfills for all /™ " €Xgp, A€ A, and kER:

@ [[f + < e+ [l
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() Hf(m)H = 0:>f<m) =
(3) there exists ¢ > 1 such that Hf('”UH < || Hf(m) ||
and [[f"k|| < c|k|[[f"].

If P is a family of seminorms on Xg, then a subset Q
of P is said to be a base of seminorms for P, if for
each pEP there is a g€Q and a positive real s such
that p <sgq.

Definition 2.7. Let P be a family of countable proper
system of seminorms on Xg.

(1) If for any finite number py,py,...,pr EP, with [> 0,
there are p€P and C> 0 such that, for all f")
Xg, sup,_y_ Pe(f™) < C,(f™), then P is called a
proper system of seminorms on Xg.

(2) If (Xg, P) is a seminormed Hausdorff topological
space such that j<I implies that P;(f™)) < Py
(fm) for all f"™ Xy and for all f"™ €UCXg,
there are e> 0 and M>0 such that
{gm eXg : P(f™ —rM)< e} CU for all j < M
and Xp is Complete w1th respect to the metric
topology, then Xy is called Fréchet module.

(3) A sequence (P,),., in a Fréchet module Xy is

said to converge to an element " Xy if and
only if, for all P;€P, we have lim P]-(frgm -
n—oo

fmy = 0.

Definition 2.8. A Banach module over Xy is an Xg
over Am equipped with a  function

Il ” —[0,00) such that for all f(" r(™ e A,
and AEXR
@ ol =0,
@) [If ]y < QL+ 1L,
(3) there exists ¢>0 such that [ft2, < c[al]
4,
@, —0=" —o.,

(5) A, is complete with respect to the metric
) = ) - P

It should be noted that a Banach module is a Fréchet
module over A,,.

Given an open ball S(R) and a closed ball S(R) with
both having a radius R>0 and given an open ball

ST(R) enclosing the closed ball S(R). We then
consider: T[S(R)] = {r™ €T[S(R)] : r"™(x) is SMF
VreSE); TR - (" ST r™) s

SMF Vx€S(R)}; T[S*(R)]={r" ET[S*( )] (m) (x) is
SMF VxSt (R)}; T[oo}:r“")eT[ ;7™ (x) is an
entire SMF in A,}; T[0t]={r" eT[0*]:r"(x) is
SMF at the origin}. Then the countable family of a
proper system of seminorms (which defines a
Fréchet module) of each of the sets mentioned above

are given respectively by: || ||.. = supg e [r™ (x)],
XEALVR <R, r™eT[SR); |r™||,= supg(R)
[r™(x)|, x€An, r™eT[SR)]; Hr<’”)HR = supg

[r™(x)|, x€A,VR<R", r(”‘>€T[S+( ||r"‘)H =
supg, [r" )], xEA,,  n<oo, T [oo);
[l :sup§<6>‘r<m)(x)|, xEAm,e>0, vrm ET[O*]

where S(¢) is a closed ball of radius ¢ surrounding 0.

Definition 2.9. Let {PJ"”

Fréchet module Xg. Then P (x) is a base, if it can
be expressed in the form

ZP

(x)} be a sequence of

nk’ nkEA (22)

Where

P (x) = "p"PU PI € A, (2.3)
k

mm = (771(1",?) and P"™ = (P,S",?) are the Clifford

matrices of operators and coefficients of the base

(P (x)} in Ay

Remark 2.2. Every simple base is a base of degree
n(neN) and every Cannon base (i.e,

lim sup{Nn}% = 1, where N, is the number of non-

n—oo
(

zero terms wn";) in (2.2)) is also a base.

Theorem 2.1. [13] The necessary and sufficient condi-
tion for a SMP to be a base in S(R)is P 1™
II™PpPm) = [ where I is unit matrix.

Remark 2.3. For Appell SMP, the Cauchy’s inequality
in the neighborhood of S(R), can be written as

o L

p™ 2.4
| < 24)
If r don pn ( ) b ( x) is a SMF on a Fréchet
module XR, then one can write

_ (m) (m)

=Y P, (r™) (2.5)
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where

1, (r™) = Zk wfli';{)ak (rtm)

(2.6)

Definition 2.10. A base {Pﬁ,m) (x)} in a Fréchet module
Xp is called effective, if the basic series (2.5) converges
uniformly to r™) (x) on Xg.

The Cannon function pm  (R) concerning the
effectiveness of the base in the  Fréchet module Xz, is

given by
Apim (R )—hr;:s::p{ Pl (R)}% (2.7)
Where
=S Ip 28)
|[Py"|| = sup|Py" (x)] (2.9)
S®)

Theorem 2.2. Let {Pﬁ,m) (x)} be a sequence of bases
in Fréchet modules [S(R)], 7T [S(R)], 7 [S(RY)),
T [o] or T [07]. Then {Pﬁlm) (x)} is effective if and only
if Ap(m) (R) = R, Ap(m) (R*) <R VR* <R, Ap(m) (R+) =R,
Apm (R) <0 VR <00, or Apwm (07) = 0, respectively.

Definition 2.11. The order ppw and type Tpwm of a
base {P,(f") (x)} of SMP are defined as follows:

log (;)Pslm) (R)

Ppm) = hm hrris::p nlogn (2.10)
lim & 1i {ow®}” 211
T p(m) —szﬁo; 1r;1as;1p# (2.11)

If a base {P,(qm) (x)} is of order ppwm (re_sp., type Tpw ),
then it will represent in uny S(R) every entire
SMEF of order — — (resp type ).

T (m)

Definition 2.12. The T, — propertyof SMPinT[S(R)],
7 [S(R)] or at the origin, where 0< p < oo, means that the
SMP represents all entire SMFs of order less than p in the
same domain.

Theorem 2.3. A SMP has Tp-property in T [S(R)],
T [S(R)] or at the origin iff wpm (R) <1
W p(m) (R ) < l VR <R or W p(m) (0+) <
where

respectively,

log w,m (R)
wpe (R)=lim supgi

msup— (2.12)

For more properties, one can see [13,27].

3. Exponential operators on SMPs

We now, state the new classes of exponential de-
rivative-type and integral-type operators in A,,.

Definition 3.1. Let {Pﬁ,m) (x)} be a base. Then:

(1) the exponential derivative operator EXP(0), is
defined by

(x) =e"py" (x)

(2) (ii) the exponential integral operator EXP(£), is
defined by

EXP(£)pl" (x) = emipl™ (x)
Now, for ¢ = ¢/~1

EXP(0)p™ (3.1)

(3.2)

,JEN, we introduce a 0-oper-

ator as ;4 %pnﬂ( x) = Op\"” (x) and for & = &1 ie
N, we introduce a { -operator as +1Iopn 1( x) =
épi” ().

Then from (2.3), we have

EXP(6)P™ Ze pi” (x) P (3.3)
EXP(E)P,"(x) =) e 'py" () P,y (34)

k

In the sequel, we shall write {E
{Em‘ (x )}) abbreviation of {EXP(6)P, pm

{EXP(E)P," (x)}).

Now, we estabhsh the following theorem:

(x)} (resp.,
(x)} (resp.,

Theorem 3.1. Let {P"
Then {E\"

(x)} be a base of SMPs in A,,.
) (x)} is also a base.

Proof. Since every matrix of coefficients (resp., opera-
tors) of {Eﬁlm’e) (x)} can be expressed as

Em0) — (Eil'?{"g)) = (eka:';c)> <resp.,H (m.6) — (7751’20)>

= (el 7T£l k)) ) it follows that

(m,0) ,0) ) )
= <2En’j; " ) = (ZP;?; 7r§f71> =1
k k

Similarly
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k
e
7m0 plm0) _ (ZW%H)E’%B)> _ (_nz 77,:”1?1)}((",;)> -
: : e Kk,
k k

Hence, by Theorem 2.1, we conclude that {Eﬁlm’g) (%)}
is also a base.

In a similar way, one can show that {Eﬁlm’g) (x)} is also a
base, whenever {Pﬁ,m) (x)} is a base in A,,.

4. Effectiveness of E"” (x) and E™®) (x)

In this section, we state some results concerning to
the effectiveness in Fréchet modules.

Theorem 4.1. The {E\™" (x)} is effective for T [S(R)), if
the following conditions hold:

(1) the base {Pﬁ,m) (x)} of SMP is effective for T [S(R)].
(2) lim% =1, where D,, is the highest degree of (2.2).

n—oo

Proof. Since {PSL"O (x)} is a base, it follows that

1P |k = sup|PS" (x)| and || E™” |x = sup|ES™
5(R) S(R)
(x)].
Simplifying, we have
E(mﬂ)ﬂ.(m:ﬁ) =su E(mvg) X W(mﬁ) =Su
H n n.k R P|En n.k p
5(R) S(R)

(m) p(m) T
i (m m n,
Zelpf LE N
J

< 2m||plm 7" HRZeI‘ =2"||Pim ) || &% (dic+1)
j

n

(4.1)

where the degree dy of P,(cm) (x), should be less than or
equal to Dy.
Using (2.8) and (2.7) we get

1
wEslm.o) (R) = E HE;{mﬁ) 7(’(171:0) ||R < e_" § ||Pl(<m>7751i’;() ||Redk
k k

1
(de+1)< 2me—ned" (dn+1)wpm (R) < 2mebnn
(Du+ 1)0)1,;",) (R)

(4.2)

This implies that Apwms < Apw < R. This, together
with the fact Agwmo > R, implies that Agws = R and the
desired conclusion is reached.

Remark 4.1. Theorem 4.1 is still true, if we replace
(B ()} by (B (@)}

Theorem 4.2. Both {EV"”(x)} and {E{"" (x)} are
effective for T [S(R)], T [S(RT)], T [07] and T [0]
spaces, if the following conditions are satisfied:

(1) the base {P,(qm) (x)} of SMP is effective for T [S(R)],
T [S(RY)], T [07] and T [o0], respectively,
(2) lim % =1, where D,, is the highest degree of (2.2).

The proof of Theorem 4.2 is similar to [30] and The-
orem 4.1, so we omit the details.

We give an example to show that the hypothesis (ii) in
Theorem 4.1 is necessary.

Example 4.1. Suppose {P,(qm) (x)} is a base of SMP such
that

" P (x) +p\™ (x),1 = 2n,n€0.
If n€E, then

pi™ (x) =P™ (x) = W p(m) (R)=R"= Wpim) (1)=1,
1

whenR=1= lim {wpgm) (1)}E:1

n—oo

If n€Q, then

P (x) =P (x) — P™ (x) = w,m (R)

n Pn
=R"+2R'= wpm (1) =3, when
1
2n+1

R=1= lim {wp(m) (1)} =1

n— oo 2n+1

Hence {P{" (x)} is effective for T [S(1)].
Construct the set {Eﬁlmﬂ) (x)} as follows:

n.(m)
e x),n€E,
E0) (x) = ’ <i)>
e'pl" (x) + ép)" (x),1=2n,n€0.
If n€E, then

pim(x) = —nE<""9) (x)= W) (R)=R"= Wgm) (1)=1,
1

when R=1= lim {wE(m.m (1) }2" =1

n—oo 2n

If n€Q, then

1 m
pilm) (x) :e_n [Eslm«,(ﬁ (x) - E; 0) (x):| = wE,(,m‘U) (R)
=R"+ Zean = wE(m,e) (1)
1
=14+2¢" = lim {(,L)E(mﬂ) (1) }2n+1 e
n—co 2+l

Hence {Eﬁlm‘ﬂ) (x)} is not effective for T [S(1)].
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As an application of our results, we consider the
following bases {P™(x)} and {Q"(x)} of the Bessel
and generalized Bessel polynomials in T [S(R)],
respectively:

Py (x) = EZH ka<>;m21»
Q" (x)=1,Q" (x)
_ Z nl(n+b—-1)(n+b)....n+k+b—-2)
“— k!(n — k)lak
x Pk (x)
According to [6,7], we have that both

(P (x)} and {Q"™ (x)} are effective for T [S(R)]  and
condition (ii) of Theorem 4.1 holds. Then as an imme-
diate application of Theorem 4.1 and Remark

4.1, we conclude that {P"9 (x)}, {P™9) (x)}, {Q\"*)
(x)} and {Q"4) (x)} are also effective for T [S(R)].

5. Computations of order, type and
T,-property

In this section, we study the relationship between
ppm 5 Tpon of {PY™ (x)} and pgms , Troms of {EV™ (x)}.
Theorem 5.1. If {Pﬁlm) (x)} is a SMPs of order ppum)
and type Tpw such that
D,=0ln] (5.1)

Then the following statement holds:
Ppmoy < ppm) and Tpme < Tpw), whenever ppwms = pPpwm),

where ppwmo is the order (resp., type) of {Eﬁ,’"ﬂ) (x)}.

Proof. It follows from (2.10) and (4.2), that:

log Wp(m0) (R)
hm hmsupw
log 2™eP» (D, +1) + log wpm (R)

nlogn

lim limsup

R—ooo

This implies that pgwms < ppwm
From pgms = ppw and (2.11), we have

1

{ W p(mo) (R) }" ()

n

lim

limsup
R—00 Ppm0)

n—oo

< lim
R— 00 Op(m)

, P
limsup—~— )

n—co n

which gives Tgwmsn < Tpw. Thus the theorem is proved.
Giving an example which supports Theorem 5.1:

Example 5.1. Suppose {Pi,m) (x)} is a base of SMP
such that P(()m) =1, P™ — 1 p,(f") (x).
Then
Wpm) (R)=2n"+R",
log(2n" + R")
w = 1 li — =
Ppiw = 1M 11:15;113 nlogn )
1
2" 4 R}
Tpm) = hm 1hms p%:

n—oo

Constructing the corresponding {E,&m’(;)(x)} base as

following: Eg™” =1, E™" = n" + e"pll" (x).
Then
2n"
(L)Eilmﬂ) (R) = 1 + Rn,
So that

log <2” + R">

Ppms = llm limsuyp————-=1,
T nlogn
%
froe]

TEmo) = llm —hmsupf: e.

Hence the two bases {P{" (x)} and {ES" (x)} have
the same order 1 and type e in T[S(R)].
Next example shows the importance of condition (5.1).

Example 5.2. Suppose {Pﬁlm) (x)} is a base of SMP in

such that

Py (x) =
) +
If n€Q, then

py" (x),n€E,

b2Up2v ( )7 Znn,RanE(O).

pi (x) = P (x) - 2Py (x) =

n bzv 2v

Q)Pilm) (R)

R 2v
:R"+2v<b> ,butR:bzwpﬁlm)(R):R”—i—Zv

log(R" +2v)

hm 11msup nlog n

n—oo

= ppim =

Hence {Pﬁfw
construct the set {Eﬁlm

(x)} is of order 1 in T[S(R)].
) (x)} as follows:
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e'p™(x),nEE,

EY ()=
enpilm)( x) + b2v sz ( Jyuv=n",R=bne0.

If n€Q, then
1 (m,0) v
(m) _ (m.0)
Pxu (X) - 67 " (x) - eanUEZU (x)
. 2u/eR\*
= Q)Eilm,b') (R) =R"+ 6_" <7> 5 butR="b
2ve?
ms (R) =R"
= wEil 9) ( ) + o
log (R" + 2”8—22)

= Ppmo = hn}o hiriszpw =0

Hence {E;m70> (x)} doesn’t achieve the inequality pgms <
ppw in TS(R)].

The following  theorem  establishes  the
property of {E"" (x)} for TIS(R)]:
Theorem  5.2. The base {E
property in S(R) (R> 0), if:

T, —

"0 (x) hasa T, —

(i) {PY"(x)} has T,-property in S(R),
(ii) 11mn loé):l =0.

Proof. Let wgwmy be defined by

log wms) (R)
WEm.0) (R) = hmg#

n—oo

nlogn (52)

Using (4.2), (2.12) and Theorem 5.2, we have
1

WEm) (R) < Wp(m) (R) < ;

Remark 5.1. Theorems 5.1 and 5.2 remain valid if we
replace {EV"" (x)} by {EY"
proofs.

The following example shows that the condition (5.1) in
Theorem 5.1 is necessary.

‘E)(x)} and have similar

Example 5.3. Suppose {Pflm) (x)} is a base of SMP such
that P (x) =1, Pi" (x) = pi” (x) + 2°p\™ (x), where b
is the nearest natural number to 2n log n.

Then

wpm (R)=R"+2""'R".
If R =1, then we have

) p(m) (1) =1+ 2b+1,

logw (m) (1)
wpem (R) =limsup nlcl:gn
Hence {P ( x)} has T L _1_-property in T [§(R)] Let
N

{Ei,me( )} be a base constructed as E

=2log2

x) =

0
E (x) = epi” (x) + 2epy" (x).
Then
wgmo (R)=R"+2""1e" "R,

so that

WE(m.0) (R) = liInSuplog wE(mﬁ) (1)
Hence {E,&m’g) (x)} doesn’t have T_._-property in
S(R). N
Finally, we illustrate the usefulness of Theorem 5.2 by
giving some applications. In the field of Clifford analysis,
Hassan and Aloui [5] showed the Bernoulli special
monogenic polynomials {9, (x)} is of order 1 and type ;-
and the Euler special monogenic polynomials {&,,(x)} is
of order 1 and type 1. Also both polynomials have
property Ty.
Now, using Theorem 5.2, we obtain the following
results:

nlogn =2log2e

(1) The exponential SMP of Bernoulli {51351”‘
order 1 and type -

(2) The exponential SMP of Euler {C\"™% (x)} is of
order 1 and type L.

(3) The exponential SMP of Bernoulli {SB,(:”
T1-property.

(4) The exponential SMP of Euler {@,(1""0) (x)} has
Ty-property.

N (x)} is of

D (x)} has

5.1. Conclusions

In this paper, we have established a novel set of
polynomial bases in 4,, through the utilization of
exponential derived and integral operators in Clif-
ford analysis. The operators can be viewed as a
generalization of the complex form C (when m = 1)
and quaternion form H (when m = 2). We investi-
gated the convergence properties of the effective-

ness of operators E" ( ) and E™9 (x), analyzing
their order, type and T,-property. Additionally, we
provided illustrative examples and applications to
elucidate the principal findings.
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