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ORIGINAL ARTICLE

Investigation of Role of Tungsten Ions on Structural
and Optical Properties of Sodium Borosilicate
Germinate Glass for Optoelectronic Applications

Mohamed Mundher a, Mohammed Abd El-Aity Farag a, Ayman Abd El-Karim Bendary a,
Mohamed Yousry Hassaan a,*, Abu Bakr El-Bediwi b

a Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
b Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt

Abstract

In the current work, the role of tungsten ions on the structural and optical properties of sodium borosilicate germinate
glass with the composition [70 Na 2B4O7e15 SiO2e(15-x) (Ge2O3) e x (WO3) while, x ¼ 0,2,4, 6, 8 mol %] were studied.
Fast quenching method were used to prepare the glass samples. Experimental and empirical density results confirm the
amorphous nature of the prepared samples. Fourier transform infrared, FTIR, results showed N4 decreases as WO3

increases. These results suggest that the decreasing in non-bridging oxygen (NBO), back conversion BO4 to BO3, occur
by the increase of WO3. Optical band gap show decreases from 3.3 down to 1.89 eV with increase in refractive index from
1.98 up to 2.35 these results indicate promising application for the prepared glasses in electric and optoelectronic ap-
plications.

Keywords: Optical properties, Borosilicate glass, Fourier transform infrared

1. Introduction

G lass is an amorphous, transparent, brittle and
colourless material. Also, the structural

properties of the glass can be improved by altering
some components during the manufacturing pro-
cess. Glass has versatile optical properties which is
ideal for different optical applications. Depending
on the purity and composition, glass can transmit
light in both Infra-red and visible region of
spectra. Borosilicate glasses have higher crystalli-
zation resistance compared with other glasses,
which is useful in various technological applica-
tions [1]. Naþ ion can break down the original
network of boron by acting as charge compensator
in the four coordinated boron [2e4]. Transition
metal oxides in glass have different important
applications [3e5]. While borate glasses have low
melting point and high mechanical strength
[6e11]. Bismuth ions in borate glasses have high

density which nominate these glasses to be used as
radiation shielding [12e14]. Tungsten oxide as a
transition metal oxide has different valence states
that play a important role in the electronic con-
duction. While Naþ ions side by side with the BO4

and nonbridging oxygens increase ionic conduc-
tions [15]. In this paper, the effect of tungsten ions
on the optical absorption, density, infrared spectra,
and optical energy of tungsten borosilicate
germinate glass system was reported. The elec-
trical properties of the obtained system, which is
already published [15], along with the optical
properties obtained in the current work, the pre-
pared glass system could be very useful in many
optical and optoelectronic application.

2. Experimental work

Glass samples with the composition [70
Na2B4O7e15 SiO2e (15-x) Ge2O3e (X) WO3] where,
x ¼ 0, 2, 4, 6, and 8 mol. % were prepared by the
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melt quenching technique. High purity of row
oxides of Na2B4O7, Ge2O3, SiO2, and WO3 were
used. Samples were melted in porcelain crucible at
1200 �C for one hour. The molten was poured and
quenched between two brass plates. Experimental
density of the samples was measured by Archi-
medes's method using Toluene as an immersion
liquid (FTIR) absorption spectra were obtained,
by KBr method, in the wavenumber range of
400e2000 cm�1 using Bruker vertex80 v. The optical
absorption and transmission spectra were
measured at wavelengths between 200 and 1100 nm
for the bulk glasses using Shimadzu 3600 UVeVis
spectrophotometer. The appearance of sample
x ¼ 0 is shown below.

3. Results and discussions

3.1. Density and molar volume

The density of the examined glasses was evaluated
empirically using the liquid displacement method,
and the results were compared to those found theo-
retically for the compositions' close-packed struc-
tures. For comparison, the experimental and
empirical density valueswere both displayed in Fig. 1
as a function of WO3 content. It is evident that both
density values experimental and empirical grew
steadily and linearly as WO3 concentration increase
for the compositions' close-packed structures. For
comparison, the experimental and empirical density
values were both displayed in Fig. 1 as a function of
WO3 content. It is evident that both density values
experimental and empirical grew steadily and line-
arly as WO3 concentration increase [16]. It is also
noted that the empirical density is typically higher
than the corresponding experimental density, as
shown in Fig. 1 which confirm the short-range order
in the samples under investigation. The difference
between empirical and experimental density be
explained as, the empirical density uses the crystal-
line density values of the glass component oxides
while glass contains disorder with increase the
overall volume which decrease the density of the
glass than the empirical values. The behaviour of the
density is expected with the addition of WO3 content
due to the replacement of the lighter weight Ge ions
with the heavier W ions.Appearance of sample X ¼ 0.
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Fig. 1. The change in density as function of WO3 content.
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Molar volume is closely connected to the internal
spatial structure of materials, so, it is appropriate to
provide the molar volume values of the examined
glasses as well [16]. The computed values of the
molar volumes for both empirical and experimental
calculations are shown in Fig. 2. As the WO3 content
increases, the molar volume of empirical calculation
exhibits a linear behaviour, while the experimental
measurements show a progressive drop. Molar
volume may be reduced because of the formation of
the shorter atomic links, which may have increased
the stretching force constant of the glass network
bonds [15].
The oxygen packing density (O P D) values can be

obtained by the following equation [17],

O:P:D¼ r:O
Mi

ð1Þ

where, O is the number of oxygens per unit
Formula.
The obtained values of O.P.D, given in Table (1),

show a decreasing trend with the gradual addition
of WO3.
The values of the average boroneboron separa-

tion distance hdB-Bi were also obtained by using
equation (2),

dB�B¼
�
Vb
m

NA

�1
3

ð2Þ

where NA is Avogadro's number and Vb
m is the vol-

ume of boron per mole of the sample, which it can
be calculated using equation (3),

Vb
m¼

Vm

2ð1� cBÞ
ð3Þ

where XB is the mole fraction of boron [16].
The W3þ ion concentration in all samples was also

calculated using equation (4),

NW¼ n
�
wtWO3

MwWO3

�
rNA ð4Þ

where WtWO3 is the percentage weight in the glass
sample and MwWO3 is the molecular weight of WO3.
The Polaron radius (rp) can be calculated from

equation (5),

rp¼1
2

� p

6N

�1
3 ð5Þ

where N is the number of W3þ ion concentration in
the sample [18].
The inter-nuclear distance is given by,

ri¼
�
1
N

�1
3

ð6Þ

while the field strength (F) can be calculated as
follows,
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Fig. 2. The change in molar volume as a function of WO3 content.
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F ¼ Z
r2p

ð7Þ

where z in the atomic number.
Table 1 shows the field strength and polaron

radius of the glasses under investigation. It is noted
the field strength increases with the increase of WO3

ratio. This increase is due to the increase in inter-
atomic distance and to the increase in the number of
NBO ions because of the convert of BO4 to BO3.

3.2. FTIR spectra

Figure 3 displays the IR absorption spectra for
glass samples spanning the 400 to 2000 cm�1

wavenumber range. The sample S1 deconvoluted

FTIR spectrum, seen in Fig. 4, was produced by
analysing the band of functional groups attached to
glass using a deconvolution technique. The decon-
volution peaks are related to the active peaks inside
the glass network. The peaks can be coordinated as
following: The combined bending vibration of
SieOeSi in [SiO4] causes a peak of about 480 cm�1

[19e21]. The band at 588-554 cm�1, which coincides
with the vibrations of WeO bonds, relates to the
OeSieO mode. The Naþ vibration within the glass
network is what causes the band to form at 529 cm�1

Table 1. The obtained values of the measured and calculated physical
parameters of the glasses under study.

Physical parameter for
the glass samples.

S1 S2 S3 S4 S5

rexp g/cm3 2.57 2.60 2.64 2.66 2.69
remp g/cm3 3.02 3.03 3.03 3.04 3.04
(Vm)emp cm3/mole 59.17 59.16 59.15 59.15 59.14
(Vm)exp cm3/mole 69.54 68.94 67.97 67.53 66.77
dB-B (10�8 m) 4.77 4.75 4.73 4.72 4.70
N. of W (1020 cm�1) e 1.26 1.27 1.28 1.30
rp (10�7 m) e 2.00 1.99 1.98 1.98
ri (10

�8 m) e 8.05 8.01 7.99 7.96
F (1016 cm�2) e 1.14 1.15 1.16 1.17
OPD � 1022 (Atom/cm3) 8.66 8.73 8.86 8.91 9.02

Fig. 3. The FTIR spectra of the glass samples.
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Fig. 4. Deconvoluted FTIR spectrum for S1 sample.
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[22]. The peak vibrations around 670 cm�1 and
720 cm�1 are related to BeOeB vibrations, which
come from di-borate B4O7 (670 cm�1) and penta-
borate B5O8 (720 cm�1) [23,24].
The band at 860 cm�1 could be attributed to the

stretching vibrations BeO in tetrahedral BO4 in
penta-borate groups [25,26]. The peak at 920 cm�1

represents the SieO� stretching vibration of [SiO4]
tetrahedron, the SieOeB stretching vibration and
the BeO� stretching vibration mode of [BO4] tetra-
hedron [27,28]. The band at 1020 to 1088 cm�1 refers
to the BeO stretching vibrations of BO4 in tri-borate

groups [29]. Overlapping of the asymmetric
stretching vibration of SieO in the [SiO4] tetrahe-
dron, and the reduction in peak strength means a
reduction in the bridging oxygen [30,31]. 1182 cm�1

band referred to the Be O stretching vibrations of
BO3 orthoborate groups [32,33]. 1261 cm�1 band
attributed to the stretching vibrations of Be O� in
BO3 [34]. The band located at ~1420 and 1490 cm�1

may be due to BeO stretching vibration in BO units
[35]. The band at 1640 cm�1 is OeH vibration [29,33].
N4 ¼ A4/(A3 þ A4) was used to calculate the amount
of quadruple boron, N4. A4 and A3 represent the
relative areas of the BO4 and BO3, respectively.
Deconvoluted FTIR spectra are shown Fig. 4 and in
details in Table 2. The behaviour of N4 within the
addition of WO3 is shown in Fig. 5.

3.3. Optical measurements results

The band gap of optical energy (Eopt), the refrac-
tive index (n), and the Urbach energy (Eu) The op-
tical parameters of the glass system, such as the
optical band gap energy (Eopt), Urbach energy (EU),
and refractive index (n), are determined with the use
of UVeVis spectrophotometer measurements.
Using the BeereLambert law [36], the following
features may be utilized to describe the structure of
the glass host at any given light incident:

It¼ I0e�at ð8Þ
(t) is the sample's thickness, (It) and (I0) denote the

light's incidence and transmittion intensities,
respectively. I0 is the total amount of light.

Table 2. FTIR absorption spectra analysis of the prepared glass samples.

S1 S2 S3 S4 S5

Centre 490.00 480.49 474.00 479.07 469.77
Area 2.52 0.84 1.36 1.34 0.39
Centre e 568.49 590.00 545.77 555.90
Area e 2.01 2.32 2.57 2.72
Centre 685.00 704.43 707.43 710.00 720.00
Area 9.50 9.25 10.14 11.25 11.91
Centre 845.00 847.66 853.66 854.02 863.50
Area 16.61 13.33 10.51 9.20 8.90
Centre 950.00 950.37 958.37 960.00 965.00
Area 18.32 14.73 12.25 11.96 10.41
Centre 1020.00 1044.04 1051.04 1090.46 1020.43
Area 10.59 10.87 9.98 9.72 9.33
Centre 1133.00 1123.02 1128.02 1120.00 1114.35
Area 10.01 10.08 10.76 10.98 11.76
Centre 1280.00 1273.46 1262.46 1260.00 1258.00
Area 7.71 10.06 13.49 15.45 16.59
Centre 1463.00 1487.04 1481.04 1480.00 1477.00
Area 11.02 11.31 13.69 13.70 14.08
Centre 1683.00 1680.00 1666.00 1630.00 1627.13
Area 8.85 7.23 6.18 5.03 2.03
N4 0.48 0.42 0.34 0.32 0.29
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Fig. 5. Dependence of N4 on the WO3 content.
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The optical absorption spectra obtained using
UVeVis spectroscopy are shown in Fig.(6) it is
confirmed the amorphous nature of the prepared
glass samples since they showed clear absorption
edges. The transmission spectra of glass samples are
also shown in Fig. (7). Due to nearly the same shape
of the spectra with increasing WO3 concentration,
this reveals that all the prepared glass samples have
interesting optical properties [37].
Meanwhile, the Davis and Mott relation [38] can

be used to find the optical band gap energy (Eopt) of
the glass samples:

ahn¼B
�
hn� Eopt

	n ð9Þ

where h n is incident photon energy, B is a constant,
Eopt is the optical band gap energy, and a is the

absorption coefficient. With n ¼ 2 or 1/2 for
permitted indirect and direct transition, the value of
n refers to Eopt.
Urbach energy (EU) is the length of the absorption

edge's exponential tail which is determined by the
following empirical relation [39],

a¼ a0e
hn
EU ð10Þ

where EU is the width of the band tails of localised
states, v is the radiation frequency, and a0 is a
constant.
The values of the indirect optical band gap energy

were calculated using the relationship between
(ahn)0.5 and (hn) Fig. (8) [38e41]. On the other hand,
as shown in Fig. (9), The calculation of the Urbach
energy values [39,41,42] was made using the relation
between ln (a) and (hn). As seen in Fig. (10), struc-
tural variations of the glasses under study caused
the energy gap and Urbach energy data to be vary
dramatically. In the considered borate network, the
generation of non-bridging oxygens increased the
disorder state.
The refractive index (n), of any substance is an

important physical property. It basically has control
over the material's optical and electrical character-
istics. Additionally, it is directly related to the do-
mestic fields present in the substance and the ions
and the electronic polarizability (p). The study of the
connection between (n) and (p) for any semi-
conducting material is of consider a scientific in-
terest because it has some of optoelectronic

A
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Fig. 6. The optical absorbance spectra for all the glass samples.
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Fig. 7. The optical transmittance spectra for all the glass samples.
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applications and devices [42]. The higher polariz-
ability of W3þ cations in glass system that caused the
increase of (n) [43].
The refractive index (n) calculated using the

following formula using the optical band gap energy
(Eopt) [44],

n2�1
n2þ2

¼ 1�
ffiffiffiffiffiffiffiffi
Eopt

20

r
ð11Þ

Molar refraction (Rm) is the result of reflection
loss ((n2-1)/(n2þ2)) and molar volume (Vm). This
parameter is produced by the LorentzeLorentz
equation, where Rm is proportional to Vm, and it
has the following implications for the glass structure
[45],

Rm¼
�
n2�1
n2þ2

�
Vm ð12Þ

 S1

 S2

 S3

 S4

 S5
h

0
.5

h (eV)

Fig. 8. The change of (ahn)0.5 with hn for the prepared glass samples.

Fig. 9. The variation of ln (a) with hn of the prepared glass samples.
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The molar electronic polarizability am, ac-
cording to Clausios Mosotti, is given by the relation:

am¼
�

3
4pNA

�
Rm ð13Þ

where NA is Avogadro's number.
Optical basicity (L) and electronic polarizability

(a2�
0 ) values can be obtained of Eg by using the

formulas as: [46,47].

a2�
0 ¼�0:24192Eoptþ3:5 ð14Þ

L¼�0:1344Eoptþ1:7 ð15Þ
As the W3þ concentration was increased, the

electronic polarizability of oxide and the optical
basicity increase (Table 3). This indicates that the
oxygen ions in the present glass system have the
chance to transfer electrons to the surrounding
cations [47].

The optical electronegativity (c) can be calculated
based on Eopt by applying this relation [47]:

c¼ 0:2688Eopt ð16Þ
The kind of bonding existing in the materials is

also indicated by optical electronegativity (c). The
values c are found to decrease when WO3 levels
increases in the network glasses. This decrease is
brought on by its inverse relationship to the
refractive index. The modest changes in electro-
negativity values might perhaps be caused by the
system's covalent nature [48,49].
Metallization criterion (M) gives the non-metallic

or metallic nature of the oxide glasses, where Rm/
Vm > 1 for metal and <1 for non-metal [49]. Higher
values of M are the trend of material or compound
that has larger optical band gap (Eopt) and smaller
refractive index (n) and vice versa [50,51]. Insulating
material has M near 1. A relation can be derived
from the LorentzeLorenz equation,

M ¼ 1� Rm

Vm
ð17Þ

where Vm is the molar volume of the respective
glass sample. The M data showed almost linear
decrease as WO3 increased, these results are shown
in Table 3. However, the increment in WO3 con-
centration in the glass system caused decrease in M
values due to the contraction of Eopt [47].
Optical dielectric constant, Ɛopt can be calculated

using the equation:
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Fig. 10. The relation of Eopt and Eu with WO3 content.

Table 3. Optical parameters in the glasses sample.

Optical parameter S1 S2 S3 S4 S5

Eopt (eV) 3.30 2.75 2.54 2.22 1.89
EU (eV) 1.70 2.48 2.72 3.23 4.82
Refractive index, n 1.98 2.10 2.15 2.24 2.35
optical electronegativity (c) 0.89 0.74 0.68 0.60 0.51
Metallization 0.51 0.47 0.45 0.43 0.40
dielectric constant 3.92 4.41 4.62 5.01 5.52
electronic polarizability (a2�

0 ) 2.70 2.83 2.89 2.96 3.04
optical basicity (L) 1.26 1.33 1.36 1.40 1.45
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eopt ¼n2 ð18Þ
According to Table 3, the Ɛopt showed increasing

trend with the WO3 increasing from 3.91 to 6.50. The
increase may be due to the rise in NBO in the
network of glass samples due to the addition of
WO3.

4. Conclusion

From this work we can conclude that the FTIR
result showed that BO3 increased and BO4

decreased with increasing WO3 content, accord-
ingly, NBO increases. The density measurements
confirmed the glassy state of the prepared samples.
The optical band gap, optical electronegativity and
Metallization showed decreased values while
Urbach energy, Optical band gap show high value,
3.3 eV for x ¼ 0 which decreases to 1.89 eV for
sample 8 mol % with increase in refractive index
from 1.98 up to 2.35 the refractive index, dielectric
constant, electronic polarizability and optical basic-
ity increased with increasing WO3 content. These
results let us conclude that these samples are
promising in electrical, energy storage and opto-
electronic applications.
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