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ORIGINAL ARTICLE

Bayesian and Non-Bayesian Estimation Based on Step
Stress-partially Accelerated Life Testing for Odd
Generalized Nadrajah Haghighi Exponential
Distribution

Sarah Mohammad Behairy*, Neama Taher Al-Sayed*

Department of Statistics, Faculty of Commerce, AL-Azhar University (Girls' Branch), Cairo, Egypt

Abstract

Accelerated or partially accelerated life tests are particularly significant in life testing experiments since they save time
and cost. Partially accelerated life tests are carried out when the data from accelerated life testing cannot be extrapolated
to usual conditions. The step stress-partially accelerated life test is proposed in this study based on a Type II censoring
scheme and supposing that the lifetimes of units at usual conditions follow the odd generalized Nadarajah Haghighi
exponential distribution. For the unknown parameters and acceleration factor, the maximum likelihood estimators are
obtained. The balanced square error loss function as a symmetric loss function and the balanced linear exponential loss
function as an asymmetric loss function are used to derive Bayes estimators based on informative priors. Finally, the
performance of the proposed maximum likelihood and Bayes estimates is evaluated through a simulation study and an
application using real data sets.

Keywords: Asymptotic information matrix, Balanced loss function, Censored samples, Odd generalized Nadarajah
Haghighi exponential distribution

1. Introduction

M anufacturers are being supported to design
and produce highly reliable products as

market competition and customer expectations in-
crease. The time to market is getting shorter and
shorter, so it is necessary to evaluate and estimate a
product's reliability through the design and devel-
opment stage. Additionally, manufacturing designs
continue to develop as a result of technological
development, which makes it harder and harder to
find out how long products or materials with high
reliability will last when examined according to
usual conditions. Therefore, in the manufacturing
industry, accelerated life testing (ALT) or partially
accelerated life testing (PALT) is preferred to get suf-
ficient failure data rapidly and to examine its rela-
tionship with external stress variables. ALT or PALT

provides information quickly on the life distribution
of the materials or products by testing them at
higher than usual levels of stress such as high
temperature, voltage, pressure, vibration or load to
induce early failures. A lot of time, manpower, re-
sources, and money might be saved by using this
testing.
The fundamental principle in ALT is that a life-

stress connection exists or may be presumed, so that
the data collected from accelerated conditions can
be extended to usual conditions. PALT is usually
applied in situations when such a relationship
cannot be known or supposed.
Therefore, in these situations, PALT is a more

appropriate test to run, where tested units are put
through either usual or accelerated conditions. The
concept of ALT was introduced and researched by
[1,2]. Many approaches can be used to apply stress,
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including constant stress, progressive stress, step
stress, and among others.
A specimen is put through to increase levels of

stress in step stress-ALT loading. Initially, a spec-
imen is put under to a constant stress for a pre-
determined period of time. If it does not fail, it is put
through to a higher level of stress for a set period of
time. Thus, the stress applied to a specimen is
gradually increased until it fails. Typically, all
specimens proceed with the same stress level and
test time patterning. The advantage of step stress is
the reduction of the test duration, because if failure
data collected are not enough in one stress, a higher
stress could be set to increase the probability of
failure, i.e. it can further reduce test time and vari-
ability of the failure times. The following publica-
tions provide further information about step stress-
ALT, see [3e9] among others.
In a step stress-PALT (SS-PALT) a test unit is

initially performed under usual conditions and if it
does not fail after a certain period of time or number
of failures, it is then run under accelerated condi-
tions until failure happens or the observation is
censored. The aim of this study is to obtain more
failure data in a limited period of time without
necessarily putting all test units to high-stress levels.
Several studies have been conducted using Bayesian
and non-Bayesian estimation based on SS-PALT
under Type II censoring, see [10e14].
The odd generalized Nadarajah Haghighi exponential

(OGNH-E) distribution as special case of the odd
generalized Nadarajah Haghighi generated family
distributions with application to exponential model
was proposed by [15] its cumulative distribution
function (cdf) is given by

Fðx;wÞ¼1� expf1�½4ðqlÞ�ag;x > 0; ðw > 0Þ; ð1Þ

where

4ðqlÞ¼1þ �
eqx � 1

�l
;w¼ðq;l;aÞ0; ð2Þ

the probability density function (pdf) corre-
sponding to (1) is given by

f ðx;wÞ¼alqeqlx
�
1�e�qx

�ðl�1Þ½4ðqlÞ�a�1exp½1�ð4ðqlÞÞa�;

x>0; ðw > 0Þ; ð3Þ

where q; l and a are shape parameters.
The reliability function (rf) and hazard rate function

(hrf) are given, respectively, by:

Rðx;wÞ¼ expf1�½4ðqlÞ�ag;x>0; ðw > 0Þ; ð4Þ

and

hðx;wÞ¼alqeqlx
�
1� e�qx

�ðl�1Þ½4ðqlÞ�a�1
;

x>0; ðw > 0Þ:
ð5Þ

Figures 1 and 2.
One can see that the plots of the hrf of the OGNH-

E distribution is a bathtub shape for different value
of parameters, so the OGNH-E distribution is a
flexible reliability model and it is suitable for
studying PALT model. Some statistical properties
were attained by [15]. Additionally, they derived the
maximum likelihood (ML) estimators, asymptotic
variances and covariance matrix of the ML estima-
tors and CIs for the parameters.
This paper is structured as: in Section 2, the basic

assumptions are given. The ML estimators for the
parameters, the acceleration factor and confidence
intervals (CIs) are obtained in Section 3. In Section 4,
Bayesian point estimation and Bayesian credible
intervals (BCIs) for the unknown parameters and the
acceleration factor for SS-PALT based on Type II
censored data under the balanced square error loss
(BSEL) function and balanced linear exponential loss
(BLL) function are discussed. A simulation study and
an application using two real data sets are given to
illustrate the theoretical results in section 5. Finally,
some general conclusions are presented in section 6.

2. The Basic Assumptions

The basic assumptions are given in this section.

Fig. 1. Different shapes for the probability density function.
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(1) The OGNH-E distribution is used for deter-
mining X is the lifetime of a unit under usual
conditions.

(2) The failure times Yj ; j ¼ 1; 2; : : :; ni are indepen-
dent and identically distributed (i.i.d) random
variables.

(3) z1 and z2 (usual and high) are the two stress
levels that are employed.

(4) The total lifetime of test items designated by Y
passes through two parts, which are usual and
accelerated conditions. Then, the lifetime of a
unit under SS-PALT is defined as

Y¼
(

X if X � yn1
yn1 þ b�1

�
X� yn1

�
if X>yn1

; ð6Þ

where X denotes the lifetime under the stress level
z1 and yn1 is the lifetime of the failure unit order n1th,
which is the latest failure under usual condition. The
lifetime of a test item follows the OGNH-E distri-
bution for any level of stress.
Test procedure.

(1) Assume that n test items are first set to a usual
stress z1 and run until time yn1 when actually n1
failures are occurred during testing at the stress
level z1. The test is ended if the number of fail-
ures attains the predetermined n1 units, where
n1 ¼ p1n and p1 is a percentage of the total test
units used in the test at usual use that was pre-
determined at 0<p1 < 1.

(2) The items are placed according to high-stress z2
and tested until time yn2 when exactly n2 failures

are observed for units that do not fail under the
usual use condition ðn � n1Þ, where n2 ¼ p2n and
p2 is a percentage of the total test units placed
under test according to accelerated condition
that predetermined 0<p2 < 1 and 0<p1 þ p2 < 1.
After that, the remaining nc ¼ n� n1 � n2 items
are then censored.

In this situation, if the item has not failed after a
predetermined number of failures, the test condi-
tion is changed to an increased level of stress, and it
is continued until another determined number of
failures happens or the observation is censored. The
impact of this change is to multiply the units of re-
sidual lifetime by reverse of an acceleration factor b,
where Y ¼ b�1X; is the acceleration factor that is the
ratio of mean life under usual conditions to mean
life according to accelerated conditions and b> 1. As
a result, the total lifetime of a test unit, designated
by Y, passes through two steps, the first of which is
the usual use condition and the second of which is
the accelerated use condition, correspondingly. See,
[11,13].
The pdf of an item of total lifetime Y under Type II

censoring in a simple SS-PALT is provided by:

Y¼
�
f1ðy;wÞ if y� yn1
f2ðy;FÞ if y>yn1

; ð7Þ

where f1ðy;wÞ; follow an OGNH-E distribution with
pdf

f1ðy;wÞ¼alqeqlyj
�
1� e�qyj

�ðl�1Þ�
4jðqlÞ

�a�1

� exp
�
1� �

4jðqlÞ
�a�

;y� yn1 ; ðw > 0Þ:
ð8Þ

By using the transformation-variable technique
f1ðy;wÞ and the model shown in (3), the pdf of
f2ðy;FÞ, is obtained as below

f2ðy;FÞ¼alqeqlk j
�
1� e�qk j

�ðl�1Þ�
4jðqlbÞ

�a�1

� exp
�
1� �

4jðqlbÞ
�a�

;

y>yn1 ; ðw > 0Þ; b > 1; ð9Þ

where8<:F¼ðq;l;a;bÞ0;4jðqlÞ¼1þ
�
eqyj �1

�l

;

4jðqlbÞ¼1þ�
eqk j �1

�l
;k j¼b

�
yj�yn1

�
þyn1;

ð10Þ

for a unit tested at acceleration conditions the
cdf, rf and hrf of pdf f2ðy;FÞ are provided by

Fðy;FÞ¼1� expf1�½4rðqlbÞ�ag;y> yn1 ;ðw> 0Þ; b> 1;

ð11Þ

Fig. 2. Different shapes for the hazard rate function.
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Rðy;FÞ¼ expf1�½4rðqlbÞ�ag;y>yn1 ; ðw > 0Þ; b > 1;

ð12Þ
and

where

4rðqlbÞ¼1þ
�
eq½bðyr�yn1Þþyn1� � 1

�l

; ð14Þ

the observed values of the total life time Y can
be obtained by

yð1Þ �yð2Þ �…�yðn1Þ �yðn1þ1Þ �…�yðn1þn2�1Þ � yr:

3. Classical Estimation

Point estimation of the unknown parameters and
the acceleration factor for the OGNH-E distribution
for SS-PALT using Type II censored data are
investigated in this section. The interval estimation
of the unknown parameters are also derived.
The likelihood function (LF) of the observations and

nc censored data according to SS-PALT based on
Type II censoring is as below

LðFÞf
Yn1
j¼1

alqeqlyj
�
1� e�qyj

�ðl�1Þ�
4jðqlÞ

�a�1

� exp
�
1� �

4jðqlÞ
�a�

�
Yn2
j¼1

alqbeqlk j
�
1� e�qk j

�ðl�1Þ�
4jðqlbÞ

�a�1

� exp
�
1� �

4jðqlbÞ
�a�

�
Ync
j¼1

expf1�½4rðqlbÞ�ag; ð15Þ

where 4jðqlÞ;4jðqlbÞ; k j and 4rðqlbÞ are provided by
(10) and (14), consequently.

3.1. Point estimation

By maximizing the logarithm of (15), represented
by l then the ML estimators of a; l; q and b are
produced and having the form:

l¼ lnLðFÞfnp1 lnðaÞþnp1 lnðlÞþnp1 lnðqÞ

þ
Xn1
j¼1

qlyjþðl�1Þ

�
Xn1
j¼1

ln
�
1� e�qyj

�þða�1Þ
Xn1
j¼1

ln½4jðqlÞ
�

þ
Xn1
j¼1

�
1� �

4jðqlÞ
�a�

þnp2 lnðaÞ þ np2 lnðlÞ þ np2 lnðqÞ þ np2 lnðbÞ

þ
Xn2
j¼1

qlk jþðl�1Þ

�
Xn2
j¼1

ln
�
1� e�qk j

�þða�1Þ
Xn2
j¼1

ln½4jðqlbÞ
�

þ
Xn2
j¼1

�
1� �

4jðqlbÞ
�a�

þncf1�½4rðqlbÞ�ag: ð16Þ
The partial derivatives of the logarithm for the

LF with regard to a; l; q and b are presented below:

vl
va

¼nðp1 þp2Þ
a

þ
Xn1
j¼1

ln
�
1� e�qyj

�
�

Xn1
j¼1

�
4jðqlÞ

�aln�4jðqlÞ
�þXn2

j¼1

ln
�
4jðqlbÞ

�

�
Xn1
j¼1

�
4jðqlbÞ

�aln�4jðqlbÞ
��ncf½4rðqlbÞ�a ln½4rðqlbÞ�g;

ð17Þ

hðy;FÞ¼alqeqlk jð1� e�qk jÞðl�1Þ�
4jðqlbÞ

�a�1 exp
�
1� �

4jðqlbÞ
�a�

expf1� ½4rðqlbÞ�ag
;y>yn1 ; ðw > 0Þ;b > 1; ð13Þ
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vl
vl

¼nðp1 þp2Þ
l

þq
Xn1
j¼1

yjþ
Xn1
j¼1

ln
�
1� e�qyj

�
þ ða�1Þ

Xn1
j¼1

�
eqyj � 1

�l
ln
�
eqyj � 1

�
½4jðqlÞ

�
�a

Xn1
j¼1

�
4jðqlÞ

�a�1�eqyj � 1
�l
ln
�
eqyj �1

�þq
Xn2
j¼1

k j

þ
Xn2
j¼1

ln
�
1� e�qk j

�

þða�1Þ
Xn1
j¼1

ðeqk j � 1Þllnðeqk j � 1Þ
½4jðqlbÞ

� �a
Xn1
j¼1

�
4jðqlbÞ

�a�1

� �
eqk j � 1

�l
ln
�
eqk j �1

�� anc

�
½4rðqlbÞ�a�1

�
�
eq½bðyr�yn1Þþyn1� � 1

�l

ln
�
eq½bðyr�yn1Þþyn1� �1

�	
;

ð18Þ

vl
vq

¼nðp1 þp2Þ
q

þl
Xn1
j¼1

yjþðl�1Þ
Xn1
j¼1

yjeqyj�
eqyj � 1

�
þ lða�1Þ

Xn1
j¼1

yjeqyj
�
eqyj � 1

�l�1

½4jðqlÞ
�

�al
Xn1
j¼1

�
4jðqlÞ

�a�1yjeqyj
�
eqyj � 1

�l�1þl
Xn2
j¼1

k j

þ ðl�1Þ
Xn2
j¼1

k jeqk j

ðeqk j � 1Þ

þlða�1Þ
Xn2
j¼1

yjeqk jðeqk j � 1Þl�1

½4jðqlbÞ
�

� al
Xn2
j¼1

�
4jðqlbÞ

�a�1
k jeqk j

�
eqk j � 1

�l�1

�alnc

�
½4rðqlbÞ�a�1

�
eq½bðyr�yn1Þþyn1� � 1

�l�1

eq½bðyr�yn1Þþyn1���yr �yn1
�þyn1

�	
;

ð19Þ

and

vl
vb

¼np2

b
þlq

Xn2
j¼1

�
yj�yn1

�
þqðl�1Þ

Xn2
j¼1

�
yj�yn1

�
e�qk j�

1� e�qk j
�

þqlða�1Þ
Xn2
j¼1

ðeqk j �1Þl�1

½4jðqlbÞ
�

�
Xn2
j¼1

ðeqk j � 1Þl�1
�
yj � yn1

�
eqk j

½4jðqlbÞ
�

� alq
Xn2
j¼1

�
4jðqlbÞ

�a�1�eqk j � 1
�l�1

�
yj�yn1

�
eqk j

�alqnc

�
½4rðqlbÞ�a�1

�
eq½bðyr�yn1Þþyn1� � 1

�l�1

eq½bðyr�yn1Þþyn1���yr � yn1
��	

;

ð20Þ

where 4jðqlÞ;4jðqlbÞ; k j and 4rðqlbÞ are provided by
(10) and (14), consequently.
Equations (17)e(20) are set to zero to obtain the

ML estimators. ML estimations for the parameters
a; l; q and b can be derived by numerically solving
the system of non-linear equations employing the
NewtoneRaphson technique.

3.2. Asymptotic confidence intervals

The partial second derivatives of the logarithm of
the LF are used to construct the asymptotic variance
covariance matrix for the estimators a; l; q and b

dependent to the inverse asymptotic Fisher informa-
tion matrix (AFIM).
The AFIM can be written as follows:

~I¼ �



v2l
vFivFj

�
;where i; j¼1;2;3;4; ð21Þ

where F1 ¼ a;F2 ¼ l;F3 ¼ q and F4 ¼ b.
According to regularity criteria, the ML estimators

are consistent, asymptotically unbiased and
asymptotically normally distributed in large sample
sizes. As a result, the asymptotic CIs (ACI) of the
parameters may be determined by

P


� Z < bF i�FiffiffiffiffiffiffiffiffiffiffiffifficvarðbF iÞ

p <Z
�
¼ 1� t where Z is the

100
�
1�t

2

�
th standard normal percentile.
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The two-sided approximate 100ð1�tÞ% the CIs
are

LLFi ¼ bFi�Zt
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarðbFiÞ
q

andULFi ¼ bFiþZt
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidvarðbFiÞ
q

;

ð22Þ

where LLFi and ULFi are the lower limit ðLLÞ and
upper limit ðULÞ; dvarðbFiÞ is the ith diagonal element
of asymptotic variance covariance matrix andbFi is ba; bl; bq or bb; respectively.

4. Bayesian Estimation

The parameters and acceleration factor of the
OGNH-E distribution for the SS-PALT are esti-
mated using the Bayesian point and BCIs based on
Type II censored samples in this section. The BSEL
and BLL loss function are employed to demonstrate
Bayesian estimator for the parameters and acceler-
ation factor of the OGNH-E distribution.
When the sample size is too small for more

advanced statistical analysis to be conducted,
Bayesian statistics can be a useful tool for solving
specific inference problems. The Bayes estimator is
an estimator that reduces the posterior expected
value of a loss function, or the posterior expected
loss. Alternatively, it maximizes the posterior
expectation of a useful function.
The unknown parameters are regarded as random

variables in Bayesian analysis. The use of prior in-
formation about the unknown parameters is con-
cerned. The posterior information is acquired to
estimate the behavior of the items assuming usual
conditions. Because the integrations in these situa-
tions are complex so numerical results are
produced.
Prior distributions for the parameters are consid-

ered to be the informative priors. Assuming that the
parameters vector F ¼ ðw; bÞ are independent and
belongs to gamma distribution, where Fi � gamma
ðai; biÞ and ai; bi are the hyper-parameters of the
prior distribution for i ¼ 1; …; 4. Then, for all the
unknown parameters, the joint prior distribution
has a joint pdf provided by

pðFÞf
Y4
i¼1

Fi
ai�1 expð�biFiÞ; b > 1; ðw;ai;bi > 0Þ;

ð23Þ

where F1 ¼ a;F2 ¼ l;F3 ¼ q, F4 ¼ b and
w ¼ ða; l; qÞ0.
The joint posterior distribution for F can be

determined by combining the LF in (15) and the
joint prior distribution given by (23) as follows

p
�
F
 y�

¼Aanðp1þp2Þþa1�1lnðp1þp2Þþa2�1qnðp1þp2Þþa3�1bnp2þa4�1

�exp½ � ðb1aþb2lþb3qþb4bÞ�

�
Yn1
j¼1

eqlyj
�
1� e�qyj

�ðl�1Þ�
4jðqlÞ

�a�1

�exp
�
1� �

4jðqlÞ
�a�Yn2

j¼1

eqlk j
�
1� e�qk j

�ðl�1Þ�
4jðqlbÞ

�a�1

�exp
�
1� �

4jðqlbÞ
�a�Ync

j¼1

expf1�½4rðqlbÞ�ag; ð24Þ

where 4jðqlÞ;4jðqlbÞ; k j and 4rðqlbÞ are presented
by (10) and (14), respectively, ai; bi are the hyper-
parameters of the prior distribution for i ¼ 1;…; 4,
A is the normalizing constant and can be derived as
follows

Z
F

p
�
F
 y� dF¼1; ð25Þ

whereZ
F

¼
Z
a

Z
l

Z
q

Z
b

and dF¼ da dl dqdb: ð26Þ

4.1. Bayesian estimation based on balanced loss
functions

Asymmetric and symmetric loss function are the
two categories into which loss function are divided.
There are many different forms of symmetric and
asymmetric loss function.
[16] introduced the class of the balanced loss func-

tion (BLF). An extended class of the BLF was pro-
posed by [17], with the following form:

L*ðq;~qÞ¼u lðq;bqÞ þ ð1�uÞ lðq;~qÞ; ð27Þ

where lðq; ~qÞ represents any loss function, bq is a
selected target estimator of q and the weight ue½0;1�.
The BLF employs in a variety of loss functions for
example the absolute error loss, squared error loss
(SEL), entropy and linear exponential (LINEX) func-
tions. Based on the BLF, the estimator of a function
is a mixture of the Bayes estimator under any loss
function and the ML estimator, least squares esti-
mators or any other estimator.
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The Bayes estimator of q, using the BSEL function
is as follows:

~qBSE¼u bqML þ ð1�uÞ~qSE; ð28Þ

where bqML is the ML estimator of q and ~qSE is its
Bayes estimator under SEL function. Also, the Bayes
estimator based on the BLL function of q is derived
as:

~qBLL¼�1
v

ln
�
u expð�vbqMLÞþð1�uÞ E�expð�vqÞx��;

ð29Þ

where vs0 is the shape parameter for the BLL
function.
Other estimators, such as the least squares esti-

mator may be employed instead of the ML esti-
mator. Several studies used the symmetric and
asymmetric BLF to construct Bayes estimators for
several other distributions, see [18e20].

4.1.1. Bayes estimators under balanced squared error
loss function
From (24) and (28), the Bayes estimators for the

parameters using the BSEL function can be obtained
as shown below

~FiBSEL¼ubFiML þ ð1�uÞ
Z
F

Fip
�
F
y� dF; ð30Þ

where p
�
F
 y� is given by (24) and

R
F; dF; are given

by (26).
By replacing Fi by a; l; q and b in (30), one can

obtain the Bayes estimators of the parameters under
BSEL function.

4.1.2. Bayes estimators under balanced linear
exponential loss function
From (24) and (29) the Bayes estimators of the

parameters under BLL function can be obtained as
follows

~FiBLL¼
�1
v

ln

(
u expð � vbFiMLÞ

þð1�uÞ
Z
F

expð�FivÞp
�
F
y� dF;

ð31Þ

when Fi replaces by a; l; q and b in (31), one can
obtain the Bayes estimators of the parameters under
BLL function.

4.2. Bayesian credible intervals

In general ½LðyÞ <Fi <UðyÞ� is a 100(1-t) % BCIs
for Fi where Fi ¼ a; l; q or b if

P
��

L
�
y
�
<Fi < U

�
y
�y�¼ Z U

�
y
�

L
�
y
� p

�
Fi

y�dFi¼1�t:

ð32Þ
The LL and UL

h
L
�
y
�
;U

�
y
�i

can be obtained
by evaluating

P
�
Fi > L

�
y
�y�¼1�t

2
and P

�
Fi > U

�
y
�y�¼t

2
;

ð33Þ

where Fi ¼ a; l; q or b, L
�
y
�
;U

�
y
�
are the LL and

UL of BCIs.

5. Numerical Illustration

In this section, the accuracy of theoretical results
of ML and Bayes estimates are investigated using
simulated and real data sets.

5.1. Simulation algorithm

A simulation study is carried out in this subsec-
tion to demonstrate the efficiency of the provided
ML and Bayes estimates for SS-PALT using Type II
censored data generated from the OGNH-E ða; l; qÞ
distribution. In ML and Bayes estimates (point and
interval) are calculated. For all simulation in-
vestigations, the Mathematica 9 and R programming
language are used.

5.1.1. For maximum likelihood method using
Mathematica 9
The following are the steps of the simulation

process using Type II censored data:
Step 1: Random samples of size n are generated

from the OGNH-E ða; l; qÞ distribution for specified
values of w.

[15] provide the following transformation be-
tween the uniform distribution and the OGNH-E
distribution

xu¼1
q
ln


1þ

�
1� lnð1� uÞ1a � 1

�1
l

�
;0<u < 1:

Where u1; u2;…; un are random sample from uni-
form (0,1).
Step 2: Our experiment is conducted using Type II

censoring, which means it ends when the first fail-
ure occurs. Each of the n test items is initially

34 S.M. Behairy, N.T. Al-Sayed / Al-Azhar Bulletin of Science 34 (2023) 28e40



performed under usual use condition, if the number
of failures exceeds n1 ¼ p1n items, which is pre-
determined, the test is stopped, where p1 ¼ 20% is a
percentage of total test items tested under usual use
condition. The remaining items (80% n) are then
placed on accelerated use condition and run until the
number of failures exceeds n2 products, at which
point the test is ended, where n2 ¼ p2n and p2 ¼ 20%
is a percentage of all test items put on test according
to the predetermined accelerated condition.
Step 3: Under Type II censored samples, the dis-

tribution parameters and acceleration factor are
estimated in SS-PALT for each sample and for each
set of parameters. To get the estimates of a;l;q, and
b, the Newton Raphson approach is used to solve
the nonlinear Equations (17)e(20).

Repeat all of the preceding steps N times, where N
denotes a predetermined number of simulated
samples andN¼ 1000 is the number of repetitions.

Step 4: Some accuracy metrics are used to eval-
uate the performance of the estimates. It is

convenient to employ average and estimated risk (ER)
to analyze the precision and volatility of the esti-

mations, where bFi ¼
PN

j¼1
bF j

i

N , Fi ¼ a; l; q and b and

ER ¼
PN

j¼1
ðestimate�true valueÞ2

N .
Step 5: Equation (22) is used to get the two-sided

CIs with confidence levels for the acceleration factor
and the two parameters.

Tables 3 and4 show thesimulation results of theML
estimates for samples of size (n ¼ 30, 60, 100). The
values of the parameters for each sample size are
chosen as (case 1, a ¼ 0:7; l ¼ 0:7; q ¼ 0:6; b ¼ 1:1;
p1 ¼ 30% and p2 ¼ 60%Þ and (case 2, a ¼ 0:7; l ¼
0:7; q ¼ 0:6; b ¼ 2:1;p1 ¼ 30% and p2 ¼ 60%Þ.

5.1.2. For Bayesian estimate using R programing
Step 1: Using the preceding generation processes

a Type II censored sample may be constructed from
the OGNH-E distribution.

(1) The set of hyper parameters (ai ¼ 10;0:5;0:1;0:5;
bi ¼ 10; 10; 20; 15) for i ¼ 1;…; 4 consequently.

Table 1. The goodness of fit measures for fitted models of Application 1.

Model KS AD CM LL AIC BIC CIAC HQIC

OGNH-E 0.139 0.871 0.129 101.52 209.05 214.79 209.57 211.24
GLE 0.122 0.885 0.131 101.77 209.54 215.28 210.07 211.73
APTW 0.140 0.892 0.133 102.12 210.64 216.38 211.16 212.83
Ex-GLE 0.115 0.896 0.139 102.28 210.57 217.22 211.46 213.48
EL 0.142 0.975 0.155 102.96 211.93 217.66 212.45 214.11
APTE 0.220 1.027 0.165 107.09 218.19 222.01 218.45 219.65

Table 2. The goodness of fit measures for fitted models of Application 2.

Model KS AD CM LL AIC BIC CIAC HQIC

OGNH-E 0.063 0.473 0.078 168.64 343.28 351.62 343.49 346.67
GLE 0.092 0.516 0.802 168.70 345.17 353.51 345.38 348.56
APTW 0.144 0.573 0.087 170.60 347.21 355.55 347.42 350.60
Ex-GLE 0.087 0.565 0.084 168.84 345.68 354.79 346.03 350.19
EL 0.093 0.591 0.149 170.82 347.65 355.99 347.86 351.03
APTE 0.310 2.041 0.334 245.59 495.18 500.74 495.28 497.44

Table 3. Maximum likelihood averages, estimated risks and 95% CIs for the parameters a; l; q; b based on Type II censoring (N ¼ 1000 ;p1 ¼ 30%;

p2 ¼ 60%) (Case 1, a ¼ 0:7; l ¼ 0:7; q ¼ 0:6;b ¼ 1:1Þ.
n p Parameters Averages ERs LL UL Length

a 0.7362 0.1531 0.1249 1.3475 1.2226
30 p1 ¼ 30% l 0.8149 0.1184 0.5435 1.0864 0.5429

p2 ¼ 60% q 0.3543 0.0426 0.0679 0.6408 0.5729
b 0.9847 0.4657 0.0000 2.3030 2.3030
a 0.8037 0.0924 0.7775 0.8299 0.0523

60 p1 ¼ 30% l 0.8136 0.0987 0.7746 0.8526 0.0779
p2 ¼ 60% q 0.3497 0.0241 0.2711 0.4283 0.1571

b 0.9311 0.0721 0.5219 1.3404 0.8186
a 0.7262 0.0512 0.7181 0.7343 0.0163

100 p1 ¼ 30% l 0.7468 0.0609 0.7415 0.7519 0.0105
p2 ¼ 60% q 0.5434 0.0023 0.5047 0.5821 0.0774

b 1.0763 0.0011 1.0308 1.1217 0.0909
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Table 4. Maximum likelihood averages, estimated risks and 95% CIs of the parameters a; l; q;b based on Type II censoring (N ¼ 1000, p1 ¼ 30%;

p2 ¼ 60%) (Case 2, a ¼ 0:7; l ¼ 0:7; q ¼ 0:6;b ¼ 2:1Þ.
n p Parameters Averages ERs LL UL Length

a 0.7685 0.3064 0.1803 1.7173 1.8976
30 p1 ¼ 30% l 0.8269 0.1308 0.5242 1.1297 0.6055

q 0.5781 0.1056 0.0000 1.1965 1.1965
p2 ¼ 60% b 1.5621 5.7703 0.0000 6.1507 6.1507

a 0.8743 0.1439 0.7533 0.9953 0.2419
60 p1 ¼ 30% l 0.8034 0.0924 0.7656 0.8412 0.0756

q 0.6825 0.0816 0.2519 1.1130 0.8610
p2 ¼ 60% b 0.7209 4.4116 0.0000 3.8259 3.8259

a 0.7262 0.0512 0.7159 0.7365 0.0206
100 p1 ¼ 30% l 0.7509 0.0629 0.7397 0.7621 0.0224

q 0.4449 0.0034 0.4069 0.4829 0.0759
p2 ¼ 60% b 2.1455 0.0116 1.9538 2.3373 0.3835

Table 5. Bayes averages, ERs and 95% Bayesian credible intervals for the parameters a; l; q; b using informative prior under balanced square error
loss function based on Type II censoring (Case 1, N¼ 5000,u ¼ 0:2;a ¼ 1:5; l ¼ 0:9; q ¼ 0:8; b ¼ 2:1;p1 ¼ 20%;p2 ¼ 20%;p1 ¼ 20%;p2 ¼ 40% and
p1 ¼ 20%;p2 ¼ 70%Þ.
n p Parameters Averages ERs LL UL Length

a 1.4968 0.0325 1.4628 1.5748 0.1121
20 p1 ¼ 20% l 0.9590 0.0222 0.8725 0.9964 0.1239

p2 ¼ 20% q 0.8934 0.1265 0.8038 0.9608 0.1569
b 1.8984 0.0159 2.0459 2.0959 0.0501
a 1.7981 0.1714 1.5042 2.0520 0.5478

p1 ¼ 20% l 0.6543 0.1449 0.2910 0.8024 0.5114
p2 ¼ 40% q 0.4260 0.2971 0.0000 0.7658 0.9784

b 1.5375 0.3632 0.8230 2.1918 1.3688
a 1.1591 0.1997 0.4038 1.4491 1.0453

p1 ¼ 20% l 1.4501 0.4204 0.8194 1.9389 1.1195
p2 ¼ 70% q 1.2671 0.3496 0.8173 1.7369 0.9196

b 1.3079 1.0137 0.4437 2.1053 1.6616
a 1.4829 0.0321 1.4687 1.5233 0.0546

60 p1 ¼ 20% l 0.9568 0.0009 0.8778 0.9692 0.0914
p2 ¼ 20% q 0.8635 0.0035 0.7985 0.8980 0.0996

b 1.9197 0.0151 2.0979 2.1005 0.0026
a 1.6209 0.0782 1.2357 1.9933 0.7576

p1 ¼ 20% l 0.9447 0.0180 0.6204 1.1223 0.5019
p2 ¼ 40% q 0.9153 0.0298 0.6801 1.1613 0.4812

b 1.8021 0.0416 1.5389 2.1582 0.6193
a 1.5015 0.0395 1.1483 1.8203 0.6719

p1 ¼ 20% l 0.7390 0.0769 0.0598 0.9569 0.8971
p2 ¼ 70% q 0.5976 0.1146 0.2407 0.7569 0.5163

b 1.9532 0.4299 1.5084 2.5633 1.0549
a 1.4779 1.5242E-5 1.4915 1.5036 0.0121

p1 ¼ 20% l 0.9357 3.1685E-5 0.8905 0.8967 0.0062
p2 ¼ 20% q 0.8168 4.6297E-5 0.7859 0.8026 0.0166

b 1.9129 9.6342E-5 2.0834 2.0988 0.0153
a 1.4734 0.0008 1.4487 1.5424 0.0937

100 p1 ¼ 20% l 1.0089 0.0087 0.8892 1.0259 0.1367
p2 ¼ 40% q 0.8176 0.0008 0.7316 0.8399 0.1082

b 1.9560 0.0026 2.0944 2.1831 0.0887
a 1.4501 0.0026 1.3652 1.5144 0.1491

p1 ¼ 20% l 0.8586 0.0126 0.6829 0.8624 0.1795
p2 ¼ 70% q 0.7942 0.0045 0.6202 0.8350 0.2148

b 1.8338 0.0146 1.8642 2.0684 0.2042
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(2) In an informative prior, the gamma distribution
is employed.

Step 2: From (30) and (31), simulation results of
the Bayesian estimates of the parameters and ac-
celeration factor using BSEL and BLL functions are
obtained, and Tables 5e7 present the Bayes aver-
ages, ERs and BCIs of the unidentified parameters
according to Type II censoring in cases 1 and 2,
consequently.
Step 3: Repeat all of the preceding steps N times

where N ¼ 5000 is the number of repetitions.

Tables 5e7 show the simulation results of the Bayes
estimates using BSEL and BLL functions for sam-
ples of size (n ¼ 20, 60, 100). The values of the pa-
rameters for each sample size are chosen as (Case 1,
u¼0:2;a¼1:5;l¼0:9;q¼0:8;b¼2:1;p1¼20%;
p2¼20%;p1¼20%;p2¼40%andp1¼20%;p2¼70%Þ

and (Case 2, ¼ 0:2;v¼ 3; a ¼ 0:5; l ¼ 0:6; q ¼ 1:5;
b ¼ 3:5;p1 ¼ 20%;p2 ¼ 20%).

5.2. Some applications

The major objective of this subsection is to show
how the recommended methods can be applied in
practice. This is achieved using two real-life data
sets. [15] compared the efficiency of the OGNH-E to
some well-known lifetime distributions, namely;
generalized linear exponential (GLE), exponentiated
generalized linear exponential (Ex-GLE), exponential
Lomax (EL), alpha power exponential (APE) and alpha
power transformed Weibull (APTW) distributions.
They showed that the OGNH-E is fitted to the two
real data sets using some measures of goodness of
fit tests such as KolmogoroveSmirnov (KS) statistic,
Anderson Darling (AD) statistic, Cramer-Von-Misses
(CM) statistic, log-likelihood (LL), Akaike Information

Table 6. Bayes averages, ERs and 95% Bayesian credible intervals for the parameters a; l; q;b using informative prior under balanced
linear exponential loss function based on Type II censoring (Case 1, N ¼ 5000, u ¼ 0:2;v ¼ 3;a ¼ 1:5;l ¼ 0:9;q ¼ 0:8;b ¼ 2:1p1 ¼ 20%;p2 ¼ 20%;

p1 ¼ 20%;p2 ¼ 40% and p1 ¼ 20%;p2 ¼ 70%Þ.
n p Parameters Averages ERs LL UL Length

a 1.4966 0.0006 1.4904 1.5401 0.0497
20 p1 ¼ 20% l 0.9794 0.0031 0.8775 0.9764 0.0989

p2 ¼ 20% q 0.8563 0.0037 0.7767 0.9094 0.1327
b 1.9419 0.0010 2.0924 2.1549 0.0625
a 1.3397 0.0399 1.1162 1.4605 0.3443

p1 ¼ 20% l 1.0279 0.0159 0.8612 1.0996 0.2384
p2 ¼ 40% q 0.7773 0.0062 0.6003 0.8317 0.2314

b 1.7697 0.0592 1.6843 2.1618 0.4775
a 1.6679 0.1138 1.2131 2.0702 0.8571

p1 ¼ 20% l 0.9257 0.0129 0.5974 1.0375 0.4401
p2 ¼ 70% q 0.8943 0.0244 0.5755 1.1132 0.5377

b 1.8428 0.1358 1.1058 2.4009 1.2951
a 1.4701 0.0002 1.4622 1.5003 0.0381

60 p1 ¼ 20% l 0.9366 0.0002 0.8599 0.9119 0.0519
p2 ¼ 20% q 0.8221 0.0001 0.7814 0.8193 0.0379

b 1.9030 0.0007 2.0533 2.1029 0.0496
a 1.3805 0.0259 1.1451 1.5062 0.3610

p1 ¼ 20% l 0.8654 0.0141 0.6436 0.9455 0.3019
p2 ¼ 40% q 0.8443 0.0031 0.7265 0.9039 0.1775

b 1.9777 0.0113 2.0349 2.2911 0.2561
a 1.4058 0.0436 1.0337 1.6552 0.6215

p1 ¼ 20% l 0.9151 0.0065 0.7160 1.0269 0.3109
p2 ¼ 70% q 0.9018 0.0184 0.6677 1.0518 0.3841

b 1.6066 0.2288 1.2823 2.1529 0.8706
a 1.4789 2.6746E-6 1.4961 1.4999 0.0038

p1 ¼ 20% l 0.9402 6.0872E-7 0.8982 0.9014 0.0032
p2 ¼ 20% q 0.8194 2.0619E-6 0.7953 0.8007 0.0053

b 1.9224 1.3047E-5 2.0995 2.1061 0.0065
a 1.4793 0.0002 1.4757 1.5166 0.0409

100 p1 ¼ 20% l 0.9556 0.0005 0.8995 0.9364 0.0369
p2 ¼ 40% q 0.8425 0.0009 0.7971 0.8567 0.0597

b 1.9303 0.0004 2.0775 2.1356 0.0581
a 1.4889 0.0002 1.4858 1.5293 0.0434

p1 ¼ 20% l 0.9662 0.0017 0.8881 0.9702 0.0821
p2 ¼ 70% q 0.7805 0.0031 0.7116 0.7916 0.0800

b 1.9028 0.0009 2.0308 2.1152 0.0844
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Table 8. Bayes estimates for the parameters and their standard error for the real data sets based on Type II censoring.

Application I

n Parameters Estimates SE Parameters estimates SE

p1 ¼ 20%; p2 ¼
20%

a 0.9423 0.0001 p1 ¼ 20%; p2 ¼ 70% a 0.8982 0.2519

50 l 0.7235 0.0003 l 0.8523 0.1208
q 0.6554 0.0008 q 0.6542 0.1761
b 1.1023 0.0006 b 1.2654 0.0246

LINEX loss function v ¼ 3
n Parameters Estimates SE Parameters estimates SE

p2 ¼ 20% p1 ¼ 20%; a 0.9253 1.8221E-4 p1 ¼ 20%;p2 ¼ 70% a 0.8999 0.0613
50 l 0.8235 1.1018E-4 l 0.7592 0.0765

q 0.7562 9.0796E-5 q 0.7623 0.0563
b 1.2932 0.0246

b 1.2325 6.1704E-4

Application II
n Parameters Estimates SE Parameters estimates SE

p1 ¼ 20%;p2 ¼ 20% a 1.2325 0.0002 p1 ¼ 20%, p2 ¼ 70% a 1.1231 0.0368
118 l 0.9235 0.0003 l 0.8932 0.0358

q 0.5624 0.0005 q 0.6521 0.0189
b 1.5213 0.0004 b 1.4325 0.0314

LINEX loss function v ¼ 3
n Parameters Estimates SE Parameters estimates SE

p1 ¼ 20%; p2 ¼
20%

a 1.1325 7.4406E-5 p1 ¼ 20%; p2 ¼ 70% a 1.2532 0.0111

118 l 0.8972 1.3708E-4 l 0.9325 0.0056
q 0.6521 5.3342E-5 q 0.7565 0.0054
b 1.5232 4.0394E-4 b 1.5453 0.0314

Table 7. Bayes averages, ERs and 95% Bayesian credible intervals for the parameters a; l; q;b using informative prior under balanced square error
loss and balanced linear exponential loss function based on Type II censoring (Case 2,N ¼ 5000;u ¼ 0:2; v ¼ 3; a ¼ 0:5;l ¼ 0:6;q ¼ 1:5;b ¼ 3:5;
p1 ¼ 20%;p2 ¼ 20%).

n p Parameters Averages ERs LL UL Length

a 0.2534 0.3481 0.0000 0.4226 0.4226
20 p1 ¼ 20% l 0.7730 0.0541 0.1096 1.0265 0.9169

p2 ¼ 20% q 1.6007 0.1007 1.4048 1.9907 0.5859
b 2.8416 0.1010 2.4338 3.4979 1.0642
a 0.5635 0.0859 0.0000 0.8231 0.8231

60 p1 ¼ 20% l 0.8454 0.0507 0.4772 0.9567 0.4795
p2 ¼ 20% q 1.0442 0.1981 0.7657 1.3702 0.6045

b 2.2314 1.4517 1.2815 3.3597 2.0782
a 0.6419 0.0035 0.3613 0.4965 0.1351

100 p1 ¼ 20% l 0.6413 0.0072 0.4609 0.5982 0.1372
p2 ¼ 20% q 1.3898 0.0007 1.4685 1.5576 0.0891

b 2.9968 0.0035 3.3914 3.4963 0.1049

LINEX loss function v ¼ 3

n p Parameters Averages ERs LL UL Length

a 0.5748 0.0322 0.0457 0.5436 0.4979
20 p1 ¼ 20% l 0.7854 0.0323 0.4861 0.9418 0.4557

p2 ¼ 20% q 1.5306 0.0717 1.4099 2.0306 0.6207
b 2.8634 0.0625 3.0431 3.4884 0.4453
a 0.6606 8.0076E-4 0.4477 0.5034 0.0556

60 p1 ¼ 20% l 0.7043 1.4647E-4 0.5791 0.6211 0.0421
p2 ¼ 20% q 1.3839 6.5720E-5 1.4878 1.5159 0.0281

b 3.0248 5.0433E-4 3.4501 3.4989 0.0488
a 0.6822 9.1006E-6 0.4996 0.5043 9.1006E-6

100 p1 ¼ 20% l 0.6996 1.6221E-6 0.5966 0.6013 1.6221E-6
q 1.3808 1.5793E-6 1.4996 1.5022 1.5793E-6

p2 ¼ 20% b 3.0371 1.5106E-5 3.4935 3.4994 1.5105E-5
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Criterion (AIC), Bayesian information criterion (BIC),
corrected Akaike information criterion (CAIC) and
Hannan-Quinn information criterion (HQIC).
Application 1.
The first data presented by [21]. The data corre-

spond to the time between failures for a repairable
item. The data are: 0.036, 0.058, 0.061, 0.074, 0.078,
0.086, 0.102, 0.103, 0.114, 0.116, 0.148, 0.183, 0.192,
0.254, 0.262, 0.379, 0.381, 0.538, 0.570, 0.574, 0.590,
0.618, 0.645, 0.961, 1.228, 1.600, 2.006, 2.054, 2.804,
3.058, 3.076, 3.147, 3.625, 3.704, 3.931, 4.073, 4.393,
4.534, 4.893, 6.274, 6.816, 7.896, 7.904, 8.022, 9.337,
10.940, 11.020, 13.880, 14.730, and 15.080 (Table 1).
Application 2.
The second application represents the fracture

toughness of Alumina (Al2O3) using data from the
website: http://www.ceramics.nist.gov/srd/summary/
ftmain.htm. The data are.
5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5, 4.2, 4.1, 4.56,

5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 5.73, 4.35,
6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.8, 3.73,
3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4, 3.95, 4, 4.5, 4.5,
4.2, 4.55, 4.65, 4.1, 4.25, 4.3, 4.5, 4.7, 5.15, 4.3, 4.5, 4.9, 5,
5.35, 5.15, 5.25, 5.8, 5.85, 5.9, 5.75, 6.25, 6.05, 5.9, 3.6,
4.1, 4.5, 5.3, 4.85, 5.3, 5.45, 5.1, 5.3, 5.2, 5.3, 5.25, 4.75,
4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4,5, 2.1,
4.6, 3.2, 2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 4.3, 4.5, 5.5, 4.6,
4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, and 5 (Table 2).
The KS goodness of fit test is applied to check the

validity of the fitted model. The P values are given,
respectively, 0.5830 and 0.2101. The P value given in
each case showed that the model fits the data.

The Bayes estimates and standard error (SE) of the
unknown parameters for the real data sets based
on Type II censoring are provided in Table 8
(Application 1 n ¼ 50 ;p1 ¼ 20%;p2 ¼ 20%
and p1 ¼ 20%; p2 ¼ 70%;u¼ 0:2; Þ and (Applica-
tion 2, n ¼ 118;p1 ¼ 20%;p2 ¼ 20% and p1 ¼ 20%;
p2 ¼ 70%; u ¼ 0:2). According to Table 8, the
accuracy of the ERs for the parameters and ac-
celeration factor generally improved as the per-
centage p of sample items assigned to accelerated
conditions decreased. The Bayes estimates under
the BLL functions have the smallest ERs when
compared with their equivalent BSEL functions
in Table 8.

5.3. Concluding remarks

(1) Tables 3e7 demonstrate that as sample size in-
creases, the ML averages and Bayes balanced
estimate are quite similar to the population
parameter values. Furthermore when the sample
size increasing the ERs are decreasing. This

means that the estimates are consistent and get
closer to the real parameter values as the sample
size increases.

(2) As the sample size increases, the lengths of the
CIs and BCIs of the parameters get shorter.

(3) Tables 5 and 6 demonstrated that the accuracy of
the ERs for the parameters and acceleration
factor generally improved as the percentage p of
sample items assigned to accelerated conditions
decreased.

(4) In most situations, the Bayes estimates under the
BLL functions have the smallest ERs when
compared with their equivalent BSEL functions.

6. General Conclusion

The measurement of product life using usual con-
ditions frequently demands a lengthy period of time
for products with a high level of reliability. Thus, ALT
orPALTare employed tomake it easier to estimate the
units of reliability rapidly. BecauseALT items are only
processed under accelerated conditions, such re-
lationships cannot be known or presumed in some
cases. As a result, PALT is frequently employed in
such cases; in PALT, items are performed under both
usual and accelerated conditions. Based on Type II
censoring, this study presented a SS-PALT. Consid-
ering that the lifetimes of test products have the
OGNH-E distribution. The distribution parameter
and the acceleration factor of the OGNH-E distribu-
tion are estimated using the ML and Bayesian
methods. In Bayesian estimation the estimators are
obtained using two different loss functions, the BSEL
and BLL functions which are a symmetric and an
asymmetric loss functions. The BLF is a mixture of
Bayes and non-Bayes estimators. The performance of
the proposed ML and Bayes estimates is evaluated
through a simulation study and an application using
real data sets. In general, numerical computations
showed that as the acceleration factor increases the
estimates of ða; l; qÞ have been decreases. The ER,
interval of the parameters and acceleration factor all
decrease with sample size increases and the propor-
tion sample ðpÞ decreases. The Bayesian method for
estimating the parameters of the OGNH-E distribu-
tion under SS-PALT using different types of loss
functions such as general entropy and precautionary
loss functions would be useful as a basis for future
distribution theory research.
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