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ORIGINAL ARTICLE

A Numerical Study for Coronavirus Disease 2019
Spatio-temporal Lockdown Model

Ahmed Fikry Koura a, Kamal Raslan Raslan b, Khalid Karam Ali b,
Mohamed Abozeid Shaalan c,*

a Basic Science Department, Al-Safwa High Institute of Engineering, Egypt
b Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt
c Basic Science Department, Higher Technological Institute, 10th of Ramadan City, Egypt

Abstract

This article presents a detailed numerical study of lockdown (temporal and spatio-temporal) mathematical models for
coronavirus disease 2019 (COVID-19). The temporal model proposed in this study comprises a system of five nonlinear or-
dinary differential equations, while the spatio-temporal model consists of five nonlinear partial differential equations. The
reproduction number is discussed as a means to estimate the spread of the COVID-19 pandemic, and sensitivity analysis is
performed to highlight the significance of pandemic parameters. Furthermore, the stability regions of the given models, as
well as the Von Neumann stability and consistency of the numerical scheme applied to the spatio-temporal model, are
investigated. To analyze the numerical results of the presented models under various parameters and facilitate comparison,
effective methods such as the central finite difference (CFD) and Runge-Kutta of fifth order (RK-5) are applied. This
comprehensive studyprovides insights into thedynamics andbehavior of theCOVID-19pandemicunderdifferent scenarios,
shedding light on the effectiveness of lockdownmeasures and the impact of various parameters on the spread of the disease.

Keywords: Central finite difference method, Reproduction number, Runge-Kutta of fifth method, Sensitivity analysis,
Von Neumann stability

1. Introduction

A ll over the world, there are a great number of
viruses, including coronavirus disease 2019

(COVID-19), which has infected millions of people
and affected their health and the economy as well.
Many natural phenomena and life problems are
crystallized in the form of mathematical models that
are dealt with analytically or numerically [1e4]. The
transmission dynamics of the virus can be formulated
in mathematical models that understand us and pre-
dict the dynamics of the virus [5e9]. In [10] Kucharski
et al. combined datasets from inside and outside
Wuhan and formulated it as a mathematical model to
estimate the early dynamics of transmission of the
infectionand takecontrolmeasures against thespread
of the virus. Baba et al. applied some schemes such as
ODE45, Euler, Runge-Kutta of second-order (RK-2),
and RK-4 to a mathematical model of COVID-19 that
represents the imposition of lockdown inNigeria [11].

In Brazil, Valle [12] used an iterative method in the
COVID-19 model that can estimate the total number
of infections and deaths, and the observed data are in
agreement with the results obtained by theGompertz
model.Mandalet al. [13] found that to controlCOVID-
19 in India by reducing the contact of exposed and
susceptible humans to avoid imposing control mea-
sures by thegovernment, In [14] Biswas et al. studied a
model of the spreading of COVID-19, they estimated
the parameters of themodel by fitting themodel with
collected data about the virus in India and presented
predictions with the future trends of COVID-19
transmission under some control measures. Zhang
et al. [15] applied RK-4 to evaluate and analyze a new
fractional-order mathematical model for the COVID-
19 pandemic. Agarwal et al. analyzed the COVID-19
mathematical model of fractional order theoretically
[16]. In [17] Wrapp et al. showed that the infected
peoplewho show symptoms aremore numerous than
those who do not show symptoms. Rothe et al. [18]
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discovered that the COVID-19 virus has more links
than the severe acute respiratory syndrome (SARS)
virus. In [19] Hakimeh et al. introduced a mathemat-
icalmodel to reduce the transmissionof somediseases
by theCaputo fractionalorder derivative. A numerical
simulation was presented by Tuan et al. in [20] which
obtained the approximate solutions by using the
generalized Adams-Bashforth-Moulton method.
This article is arranged as follows: In section 2, we

present a mathematical formulation for the COVID-
19 lockdown (temporal and spatio-temporal)
models. We investigate reproduction number,
sensitivity analysis, and stability region analysis for
the presented model, as shown in section 3. In sec-
tion 4, we introduce numerical solutions for the
COVID-19 temporal model via two schemes: RK-5
order and the central finite difference. In section 5,
we introduce numerical solutions for the COVID-19
spatio-temporal model, study the stability and con-
sistency of the numerical scheme, and discuss the
results of the proposed model. In section 6, we
discuss the effect of some parameters on controlling
the spread of infection between individuals.

2. Mathematical formulation

In this section, we introduce a mathematical model
of COVID-19 that describes the effect of lockdown
strategies on the spread of COVID-19 betweenpeople.
The population is divided into five categories: SðtÞ
represents the susceptible people that are not under
lockdown; SQðtÞ represents susceptible persons that
are already under lockdown; IðtÞ represents infected
people who are not under lockdown; IQðtÞ represents
infected persons who are under lockdown at the same
time; and QðtÞ is the cumulative density of the lock-
downprogram.Thismodel canbe coveredbya system
of five nonlinear ordinary differential equations as a
temporal model and a system of five nonlinear partial
differential equations as a spatio-temporal model.

2.1. Temporal model

dS
dt

¼L� bSI � dsSQ� dSþ miIþ mqIQ þ nsSQ;

dSQ

dt
¼ dsSQ� dSQ � nsSQ;

dI
dt

¼ bSI �miI� riI� dI � diIQ� niIQ;

dIQ
dt

¼ diIQ� dIQ � mqIQ � rqIQ;

dQ
dt

¼ hI �jQ :

ð2:1Þ

Subject to non-negative initial conditions:

Sð0Þ¼S0;SQð0Þ ¼ SQ0; Ið0Þ ¼ I0; IQð0Þ ¼ IQ0;Qð0Þ ¼Q0 :

ð2:2Þ

2.2. Spatio-temporal model

vS
vt

¼ C1
v2S
vx2

þL� bSI� dsSQ� dSþ miIþ mqIQ þ nsSQ;

vSQ

vt
¼ C2

v2SQ

vx2
þ dsSQ� dSQ � nsSQ;

vI
vt

¼ C3
v2I
vx2

þ bSI� miI� riI� dI � diIQ� niIQ;

vIQ
vt

¼ C4
v2IQ
vx2

þ diIQ� dIQ � mqIQ � rqIQ;

vQ
vt

¼ C5
v2Q
vx2

þ hI�jQ :

ð2:3Þ
With initial conditions,

Sð0;xÞ ¼
(
2S0x 0� x� 0:5

2S0ð1� xÞ 0:5� x� 1
;

SQð0;xÞ ¼
(
2SQ0x 0� x� 0:5

2SQ0ð1� xÞ 0:5� x� 1
;

Ið0;xÞ ¼
(
2I0x 0� x� 0:5

2I0ð1� xÞ 0:5� x� 1
;

IQð0;xÞ ¼
(
2IQ0x 0� x� 0:5

2IQ0ð1� xÞ 0:5� x� 1
;

Qð0;xÞ ¼
(
2Q0x 0� x� 0:5

2Q0ð1� xÞ 0:5� x� 1
:

ð2:4Þ

And homogeneous Neumann boundary
conditions,

vSðt;0Þ
vx

¼ vSðt;1Þ
vx

¼ 0;

vSQðt;0Þ
vx

¼ vSQðt;1Þ
vx

¼ 0;

vIðt;0Þ
vx

¼ vIðt;1Þ
vx

¼ 0;

vIQðt;0Þ
vx

¼ vIQðt;1Þ
vx

¼ 0;

vQðt;0Þ
vx

¼ vQðt;1Þ
vx

¼ 0:

ð2:5Þ
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Where L is the rate of recruitment, b rate of infec-
tion contact, ds and di lockdown imposition on sus-
ceptible and infected persons respectively, ri and rq
rate of death in infected persons but not under
lockdown and infected persons under lockdown
respectively, mi and mq rate of recovery in infected
persons but not under lockdown and infected per-
sons under lockdown, ns transfer rate of susceptible
lockdown persons to susceptible class, ni transfer
rate of infection of persons under lockdown to
infection class, h achievement rate of the lockdown
program and j depletion rate of the lockdown
program.

3. Reproduction number and stability region

In this section, we introduce some important in-
dicators that help us realize the spread of the
pandemic in the population.

3.1. Reproduction number

The number of new infections caused by an infec-
tious individual inadisease-freepopulation isdefined
as thereproductionnumberR0. IfR0 > 1, thepandemic
will spread,while it will be confined ifR0 < 1 To obtain
R0 for the proposed model (2.1) we put the virus-free
equilibrium point C0 ¼ ½S0; 0; 0; 0; 0� and make the
system (2.1) equal to zero and solve it.

0¼L� bSI � dsSQ� dSþ miIþ mqIQ þ nsSQ;
0¼ dsSQ� dSQ � nsSQ;
0¼ bSI � miI� riI� dI � diIQþ niIQ;
0¼ diIQ� dIQ � niIQ � mqIQ � rqIQ;
0¼ hI �jQ:

ð3:1Þ

We get S0 ¼ L
d .

Let X ¼ ½I; IQ�T which I and IQ are components of
the infection in the model and

dX
dt

¼FðXÞ �VðXÞ; ð3:2Þ

Where

FðXÞ¼
�
bSI�diIQ

diIQ

�
;VðXÞ¼

 
miIþriIþdI�niIQ

dIQþniIQþmqIQþrqIQ

!
:

where JðFðXÞÞ and JðVðXÞÞ are the Jacobians of FðXÞ
and VðXÞ respectively.
We calculate the greatest eigenvalue of the matrix

JðFðXÞÞ * JðVðXÞÞ�1 and substitute with C0, we obtain
the reproduction number R0 for the model (2.1).

R0¼ bL

dri þ d2 þ dmi
: ð3:4Þ

3.2. Sensitivity analysis

The sensitivity analysis is studying the pandemic
parameters of the proposed model (2.1) and their
effects on the virus spread. Using the reproduction
number R0 we obtain

vR0

vL
¼ b

dri þ d2 þ dmi
;

vR0

vb
¼ L

dri þ d2 þ dmi
;

vR0

vd
¼�bLðri þ 2dþ miÞ�

dri þ d2 þ dmi

�2 ;

vR0

vri
¼ �bL�

dri þ d2 þ dmi

�2 ;
vR0

vmi
¼ �bLd�

dri þ d2 þ dmi

�2 :

ð3:5Þ

Given that all parameters are positive, then we
have vR0

vL > 0; vR0
vb > 0 and vR0

vd < 0; vR0
vri

< 0; vR0
vmi

< 0.
Thus, increasing the parameters L and b results in

an increase in R0, and increasing the parameters d,
ri, and mi leads to a decrease in R0.

3.3. Stability region

In the region of stability of the disease-free equi-
librium and endemic points shown for ðri;mi; bÞ in
Figs. 1 and 2 the values of other parameters are
fixed. In Fig. 1, we examine the effects of ðri;mi; bÞ at
the disease-free equilibrium point where R0 < 1.
Fig. 1b, c, d illustrates the projection of the stability
region ðri; bÞ with fixed mi at 0.15, 0.25, and 0.45,
respectively. We observe that ri and bmaintain their
stability at a large value of mi.

JðFðXÞÞ¼
�
bS� diQ 0

diQ 0

�
; JðVðXÞÞ¼

�
mi þ ri þ d �ni

0 dþ ni þ mq þ rq

�
; ð3:3Þ
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In Fig. 2, we examine the effects of ðri;mi; bÞ at the
endemic equilibrium point. Figure 2b, c, d illustrates
the projection of the stability region ðri; bÞ with fixed
mi at 0.15, 0.25, and 0.45, respectively. We observe
that ri and b maintain their stability at a small value
of mi.

4. Numerical solutions for temporal model

This section presents the computational methods
of the endemic model of COVID-19 2.1. We took

some parameter values from the works of literature
and estimated the other parameter values from the
stability region, which is discussed in Section 3. We
carry out two efficient numerical schemes: RK-5-
order and central finite-difference.
The RK-5 method provides a higher degree of

stability, making it effective in handling stiff ODEs
where the solution changes rapidly. Stiff ODEs often
require smaller step sizes to maintain accuracy, but
the RK-5 method can still provide accurate results
even with relatively larger step sizes compared with

Fig. 1. Stability region for disease free equilibrium point.
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lower-order methods. The main objectives in
choosing a higher order central finite difference
method are accuracy and stability. Higher order
methods approximate derivatives using more
points, leading to smaller errors. They are also often
more numerically stable, allowing a larger time step
size. This improves computational efficiency by
enabling the use of a coarser grid for a given accu-
racy. Higher order central finite difference methods
generally provide a better balance of accuracy, sta-
bility and efficiency compared with lower order
methods for solving ODEs.

4.1. Runge-Kutta 5th order (RK-5)

Assume that the initial value problem is well-
posed, then

dy
dt

¼Fðt;yÞ;a< t<b;yðaÞ ¼ e; ð4:1Þ

we establish the RK-5 technique by a sequence
of approximation points ðt;wiÞxðt; yðtÞÞ to the exact
solution of Equation (4.1) by

Fig. 2. Stability region for endemic equilibrium point.
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tiþ1¼ tiþh;

k1¼Fðti;wiÞ;

k2¼F
�
tiþh

4
;wiþk1h

4

�
;

k3¼F
�
tiþh

4
;wiþk1h

8
þk2h

8

�
;

k4¼F
�
tiþh

2
;wi�k2h

2
þk3h

�
;

k5¼F
�
tiþ3h

4
;wiþ3k1h

16
þ9k4h

16

�
;

k6¼F
�
tiþh;wi�3k1h

7
þ2k2h

7
þ12k3h

7
�12k4h

7
þ8k5h

7

�
;

wiþ1¼wiþ h
90

ð7k1þ32k3þ12k4þ32k5þ7k6Þ:

4.2. Central finite difference (CDF)

Suppose that a well-posed IVP (4.1) is given the
central finite difference (CFD) technique as a
sequence of approximation points ðti;wiÞxðti; yðtiÞÞ
to the exact solution of Equation (4.1) by

tiþ1 ¼ ti þ k;

dy
dt

¼ Fðti;wi þ kÞ þ Fðti;wi � kÞ
2k

:

4.3. Results

Now, we discuss the numerical outcomes of the
governing model with respect to the approximate
solutions. To achieve this aim, we employed the
effective Central Finite Difference and RK-5
schemes and compared the results after 200 days.
The initial conditions as discussed in [11] are
S(0) ¼ 400,SQ(0) ¼ 300,I(0) ¼ 300,IQ(0) ¼ 497, and
Q(0) ¼ 200, and the parameter values are
L ¼ 400,ds ¼ 0.0002,ns ¼ 0.2,h ¼ 0.0005,j ¼ 0.06,
mi ¼ mq ¼ 0.16979,rq ¼ 0.03275, di ¼ 0.002,ni ¼ 0.02,
d ¼ 0.0096, and assuming the values of b ¼ 0.000017,
ri ¼ 0.03275. Using the Mathematica package, we
apply our techniques of CFD and RK-5 to solve the
proposed model 2.1.
Figs. 3e7 represent the solution of the system

(2.1). It can be demonstrated that the RK-5 method
gives a better approximation than the CFD method.
All figures show that the results of the model

converge to their equilibrium points.

In Figs. 8e12, we introduce solutions with
different values of di ¼ 0.002, 0.001, and 0.003 that
represent the imposition of lockdown on infected
individuals to support the validity of our results.
Finally, from all the figures, we can confirm the

effectiveness of the proposed algorithms and their
computationally appropriate use of numerical
handling of the given model.

Fig. 3. Runge-Kutta of fifth order versus central finite difference for SðtÞ.

Fig. 5. Runge-Kutta of fifth order versus central finite difference for IðtÞ.

Fig. 4. Runge-Kutta of fifth order versus central finite difference for
SQðtÞ.
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5. Numerical solution for spatio-temporal
model

In this section, we present a numerical simulation
of the spatiotemporal model 2.3 with initial condi-
tions 2.4 and boundary conditions 2.5 beginning
with dividing the domain of x 2 [0,1] and t2 [0,200]
into 102 � 200 cubes with step size h ¼ 0.1 and t ¼ 1.
For this, we apply finite difference using

vf ðt;xÞ
vt

¼ f nþ1
i � f ni

t
;

v2f ðt;xÞ
vx2

¼ f nþ1
i�1 � 2f nþ1

i þ f nþ1
iþ1

h2 ;

vf ðt;xÞ
vx

¼ f niþ1 � f ni�1

2h
;

ð5:1Þ

and then discretizing the system and its
boundary conditions we get the following results,

Fig. 6. Runge-Kutta of fifth order versus central finite difference for
IQðtÞ.

Fig. 7. Runge-Kutta of fifth order versus central finite difference for QðtÞ.

Fig. 8. Compare between different values of di for SðtÞ.

Fig. 9. Compare between different values of di for SQðtÞ.

Fig. 10. Compare between different values of di for IðtÞ.

Fig. 11. Compare between different values of di for IQðtÞ.
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ðSÞnþ1
i ¼ðSÞni þ

tC1

h2

�
ðSÞnþ1

iþ1 �2ðSÞnþ1
i þðSÞnþ1

i�1

�
þL

�bðSÞnþ1
i ðIÞni �dsðSÞnþ1

i ðQÞni �dðSÞnþ1
i þmiðIÞni

þmq

�
IQ
�n
i þ vs

�
SQ
�nþ1

i ;

ð5:2Þ

�
SQ
�nþ1

i ¼ �SQ
�n
i þ

tC1

h2

��
SQ
�nþ1

iþ1 �2
�
SQ
�nþ1

i þ �SQ
�nþ1

i�1

�
þ Inþ1

i dsðSÞni ðQÞni �d
�
SQ
�nþ1

i � vs
�
SQ
�nþ1

i ;

ð5:3Þ

Inþ1
i ¼Ini þ

tC3

h2

�
Inþ1
iþ1 �2Inþ1

i þInþ1
i�1

�þbðSÞni Inþ1
i

�miI
nþ1
i �riI

nþ1
i �dInþ1

i �diIðQÞni þni
�
IQ
�n
i ;

ð5:4Þ

�
IQ
�nþ1

i ¼ �IQ�ni þtC1

h2

��
IQ
�nþ1

iþ1 �2
�
IQ
�nþ1

i þ �IQ�nþ1

i�1

�
þdiInl Q

n
i �d

�
IQ
�nþ1

i �vi
�
IQ
�nþ1

i �mq

�
IQ
�nþ1

i

� rq
�
IQ
�nþ1

i ;

ð5:5Þ

Qnþ1
i ¼Qi

nþtC3

h2

�
Qnþ1

iþ1 �2Qnþ1
i þQnþ1

i�1

�þhIin �jQnþ1
i :

ð5:6Þ

5.1. Stability of numerical scheme

In this subsection, we will test Von Neumann
stability for the numerical method that we have
applied.
Assume

Sn
i ¼ xn1e

Jksih;

Snþ1
i ¼ xnþ1

1 eJksih;

Sn
iþ1 ¼ xn1e

Jksðiþ1Þh;

Sn
i�1 ¼ xn1e

Jksði�1Þh;

ð5:7Þ

substitute from (5.7) in equation (5.2) we get the
following relation,

xnþ1
1 eJksih¼ xn1e

JksihþtC1

h2

�
xnþ1
1 eJksðiþ1Þh�2xnþ1

1 eJksih

þ xnþ1
1 eJksði�1Þh�þL�bxnþ1

1 eJksihðIÞni
�dsx

nþ1
1 eJksihðQÞni �dxnþ1

1 eJksih

þ miðIÞni þmq

�
IQ
�n
i þ ns

�
SQ
�n
i :

ð5:8Þ

Define the amplification factor G1 ¼ Snþ1
i
Sni

, we can

compute G1 by dividing equation (5.8) by Sni and
obtain

G1 ¼ 1þ tC1

h2

�
G1eJkSh � 2G1 þG1e�JkSh

�þL� bG1ðIÞni
�dsG1ðQÞni � dG1 þ miðIÞni þ mq

�
IQ
�n
i þ ns

�
SQ
�n
i ;

G1 ¼ 1

1þ 4
tC1

h2 sin2

�
kSah
2

�
þ t
�
y,a þ d

� ;

G1¼
����� 1

1þ 4 tC1
h2 sin

2
�
kSa h
2

�
þ t
�
y,a þ d

�
������ 1: ð5:9Þ

Similarly, repeating the previous steps to equations
(5.3)e(5.6) for ðSQÞni ; Ini ; ðIQÞni , and Qn

i with ðSQÞni ¼
xn2e

Jksq ih; Ini ¼ xn3e
JkI ih; ðIQÞni ¼ xn4e

JkðIQÞih, and
Qn

i ¼ xn5e
JkQih respectively, we also obtain

G2¼
����� 1

1þ 4 tC2
h2 sin

2
�
kSb h

2

�
þ tðdþ nsÞ

������ 1; ð5:10Þ

G3¼
����� 1
1þ4 tC3

h2 sin
2
�kIh

2

�þt
�
miþriþdþ y,b

�
������ 1; ð5:11Þ

G4¼
����� 1

1þ 4 tC4
h2 sin

2

�kðIQÞh
2

�
þ t
�
dþ ni þ mq þ rq

�
������ 1;

ð5:12Þ

Fig. 12. Compare between different values of di for QðtÞ.
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G5¼
����� 1

1þ 4 tC5
h2 sin

2
�
kQh
2

�
þ tj

������ 1: ð5:13Þ

Where y,a ¼ bIin þ dsQi
n; y,b ¼ diQi

n � bSin and J ¼ffiffiffiffiffiffiffi�1
p

.
So Gi � 1; i ¼ 1; 2; 3; 4; 5 which is the necessary

and sufficient condition for the error to remain
bounded and maintain von Nemann stability for the
numerical method.

5.2. Consistency

In this subsection, we will use Taylor expansion to
prove that this numerical scheme is first-order
consistent in t and second-order consistent in x. For
this, we use

FS¼Snþ1
i � Sn

i

t
�C1

h2

�
Snþ1
iþ1 �2Snþ1

i þSnþ1
j�1

�
�L

þbðSÞnþ1
i ðIÞni þ dsðSÞnþ1

i ðQÞni þdðSÞnþ1
i �miðIÞni

�mq

�
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�n
i � ns

�
SQ
�nþ1

i ;

FS ¼ �C1h2

12

�
v4S
vx4

�
þ t

��
bIni þ dsQn

i þ d
� vSa
vt

þ :::

�
;

which devolve to zero as t; h become zero.
Also, we can obtain the relations of SQ; I; IQ; and Q

using the previous steps as follows:

FSQ ¼�C2h2

12

�
v4SQ

vx4

�
þ t
�
abIni þ d

��vSQ

vt
þ :::

�
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�
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þ :::

�
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�
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�
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��vIQ
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þ :::

�
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�
v4Q
vx4

�
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�
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vt

þ :::

�
;

which also go to zero as t; h become zero. For this
reason, the order of accuracy of this numerical
method is h2 þ t.

5.3. Results

By solve the system (5.2)e(5.6) with the values of
parameters that were extracted and discussed in
sections 3 and 4, taking the values Ci ¼ 0.01 and
i ¼ 1, 2, 3, 4, 5.
The Neumann boundary condition states that in

complete lockdown, nobody can leave or enter the
region. We can see in Fig. 13 that the numerical
solution at the endemic equilibrium state at the
selected parameters has good agreement with the
chosen parameters.
All classes attain their maximum value in a spe-

cific region x and then decrease when they go away
from this area.

6. Effects of parameters

The value of each parameter in the model affects
the spread of the disease. The most important issue

in controlling epidemics is creating lockdown to
reduce relationships between individuals. In these
models (temporal and spatio-temporal), we studied
the effect of some parameters on infection classes I
and IQ. In these models, b represents the rate of
infectious contact, which in turn affects the increase
or decrease in the number of infected people, as
shown in Fig. 14. The lower the values of b decrease
the infection rate, which indicates that the lack of
contact between people leads to the disappearance
of the epidemic or at least a decrease in cases of
disease. On the other hand, as shown in Fig. 15, by
reducing ni, which represents the transmission of
people from IQ to I class, the number of infections
decreases with the passage of time, which shows the
role of isolation in reducing the spread of the dis-
ease. We also note an increase in mq, which repre-
sents the percentage of people recovering from the
disease and were under lockdown, significantly
reducing the number of infected people and under
lockdown, as shown in Fig. 16b and d, but the
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�
vS
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Fig. 13. Numerical simulation results for disease free equilibrium point.

Fig. 14. Numerical simulation of I, IQ with different values of b ¼ 15*10�6 and 15*10�7.
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Fig. 15. Numerical simulation of I; IQ with different values of ni ¼ 0:02; 0:002; 0:0002:

Fig. 16. Numerical simulation of I; IQ with different values of mq ¼ 0:15; 0:25; 0:45.
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percentage of infected people continues to increase
as in Fig. 16a and c. In Fig. 17, we made a compar-
ison of different values of ds and their impact on the
spread of the epidemic, where ds represents the rate
of imposing the lockdown on healthy people who
are exposed to infection. We find that by increasing
the percentage of isolation, the number of epidemic
infections decreases significantly.

7. Conclusion

In this paper, a comprehensive numerical study of
lockdown models for COVID-19 is presented,
focusing on both temporal and spatio-temporal as-
pects. The reproduction number is discussed as a
crucial indicator for estimating the spread of the
virus. The analysis includes a sensitivity analysis to
assess the significance of pandemic parameters.
Moreover, the stability regions of the models are
investigated, along with the Von Neumann stability
and consistency of the numerical scheme applied to
the spatio-temporalmodel. Numerical methods such
as the CFD and RK-5 are employed to analyze the
numerical results and facilitate comparison under
various parameters. The findings provide valuable
insights into the control andmitigation of COVID-19,
contributing to our understanding of the disease
dynamics and the effectiveness of different inter-
vention strategies. The graphical numerical results of
spatiotemporal results showed that all classes attain
their maximum value in a specific region and then

decrease when people go away from this area, which
means that lockdown is an excellent control for
decreasing infection.We discussed the effect of some
parameters on controlling the spread of infection
between individuals. Results showed that b and ni
have a direct impact on the number of infections I(t),
so that I(t) increase or decrease by increasing or
decreasing of them, while mq have an inverse impact
on I(t) and a direct impact on IQ(t) and finally dswhich
have an inverse impact on both I(t) and IQ(t), so an
increase in ds leads to a decrease in I(t) and IQ(t). This
shows the importance of applying lockdown to
reduce infection and control it. Overall, this study
contributes to the existing body of knowledge by
providing amathematical formulation andnumerical
analysis of lockdown models for COVID-19. The re-
sults offer valuable guidance for policymakers and
healthcare professionals in implementing effective
measures to control the spread of the virus and
mitigate its impact onpublic health and the economy.
Further research and refinement of these models can
continue to enhance our understanding of the com-
plex dynamics of infectious diseases and inform ev-
idence-based decision-making in pandemic
situations.
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Fig. 17. Numerical simulation of I; IQ with different values of ds ¼ 0:02; 0:002; 0:0002.
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