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ORIGINAL ARTICLE

Destructive Cellular and Anticoagulant Activities of
Chitosan Extracted from the Oriental Hornet, Vespa
orientalis L. (Hymenoptera: Vespidae) and the Rice
Grasshopper, Aiolopus thalassinus
(Orthoptera: Acrididae)

Ibrahim Saeed Ghannam, Mostafa Ibrahim Hassan, Ahmed Ibrahim Hasaballah*,
Mohamed Ahmed Awad, Ahmed Zeinhom Shehata

Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt

Abstract

The current investigation tested Chitosan isolated from adult Vespa orientalis and Aiolopus thalassinus for its cyto-
toxic and anticoagulant effects. Chitosan was analyzed for its effects on human breast cancer cells (MCF-7), human liver
cancer cells (HepG2) and lung fibroblast cells (WI-38) after being extracted and characterized by Fourier transform
infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Also, the anticoagulant
activity of extracted chitosan using activated partial thromboplastin time (APTT) and Prothrombin Time (PT) assays was
investigated. Results showed that cytotoxic activity of both extracted chitosan samples recorded cellular viability of
MCF-7 cell line equal to 17.99 and 9.53% by V. orientalis and A. thalassinus extracted chitosan at 1000 mg/ml, respectively.
At 500 mg/ml, the viability of the HepG2 cell line was recorded 54.95 and 20.76% by V. orientalis and A. thalassinus,
respectively. In addition, V. orientalis and A. thalassinus extracted chitosan showed noncytotoxic effects against the WI-
38 cell line at concentrations less than or equal to 250 and 125 mg/ml. On the other hand, the anticoagulant activity of V.
orientalis extracted chitosan using APTT assay recorded 53.7 ± 0.01 s at 75 mg/ml, while A. thalassinus chitosan reached
58.91 ± 0.04 s at 75 mg/ml. While anticoagulant activity of V. orientalis chitosan using PT assay recorded 12.16 ± 0.07 s at
25 mg/ml, compared with 14.37 ± 0.02 s for A. thalassinus chitosan at the same concentration. Based on these results, can
be inferred that V. orientalis and A. thalassinus may be considered as a source for chitosan with properties suitable for
cytotoxic and anticoagulant activities.

Keywords: Aiolopus thalassinus, Anticoagulant activity, Chitosan, Cytotoxicity, Vespa orientalis

1. Introduction

C hitosan is a natural, nontoxic biopolymer (b-
(14)-linked N-acetyl-D glucosamine) gener-

ated when the deacetylation degree of chitin (a
linear chain of acetylglucosamine groups) reaches
around 50.0% and becomes soluble in aqueous
acidic environments. Chitosan is often used in
nanoparticles, microspheres, hydrogels, films, and

fibers in the biomedical and pharmaceutical in-
dustries [1e3].

An amino/acetamido group and hydroxyl groups
at carbons (C) 2, 3, and 6 are all reactive functional
groups in chitosan. The amino acid concentration is
directly linked to their chelation, flocculation, and
biological roles [4] and is the primary explanation
for the diversity in their structures and physico-
chemical characteristics. Some structural factors,
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such as molecular weight, degree of deacetylation,
distribution of both N-acetyl glucosamine and
glucosamine in the polymer chain, crystallinity, and
direct action against pathogens, are linked to chi-
tosan's bioactivity [5].
However, cancer continues to be a major killer

across the globe. The biology of cancer has been
studied extensively in recent decades, leading to
improved diagnostic and therapy options [6]. Chi-
tosan has been shown to affect tumor cells, which
may disrupt their metabolism directly, slow their
development, or even cause them to self-destruct. It
can fight tumors by bolstering the immune system
[7,8]. Liver and breast cancers are among the most
common types of cancer that are regarded as one of
the main causes of mortality in both economically
and developing countries [9]. MTT assay showed
the inhibitory effect of chitosan prepared from the
American cockroach on the proliferation of liver
cancer cells (HepG2) and Breast cancer cells (MCF-
7) in vitro [10].
Chitosan has been prepared from the shells of

crustaceans and insects for a long time [11e16]. This
process involves removing the protein, demineral-
ization, decolorization and deacetylation. Arthro-
pods, of which insects are a part, have inspired
researchers to look for novel medicinal compounds
[17e19]. The present research aimed to (1) extract,
prepare and characterize chitosan from the adult
Vespa orientalis and Aiolopus thalassinus (2) evaluate
the cytotoxic against human breast cancer (MCF-7),
human liver cancer (HepG2), and lung fibroblast
cell lines (WI-38 and to (3) examine the chitosan's
anticoagulant properties through activated partial
thromboplastin time (APTT) and Prothrombin Time
(PT) tests evaluation.

2. Materials and methods

2.1. Colonization of tested insects

2.1.1. Colonization of oriental hornet, V. orientalis
Adults of V. orientalis needed for the bioassay were

obtained from the laboratory of the Honeybees
Research Department, Plant Protection Research
Institute, Dokki, Giza, Egypt.

2.1.2. Colonization of the rice grasshopper,
A. thalassinus
Adults of A. thalassinus were collected from an

insectary in the Entomology Department of Cairo
University's Faculty of Science in Giza, Egypt. They
were then reared in the insectary of the Animal
house in the Zoology Department of Al-Azhar

University (Cairo) for several generations under
strictly regulated environmental conditions,
including temperature (35 ± 2 �C), relative humidity
(65e70%), and photoperiods (12e12 h lightedark
rhythm). A. thalassinus were bred in wire-screen
enclosures heated by electricity (40 � 40 � 50 cm).
Grasshoppers were provided with fresh, clean
leaves of clover (Trifolium alexandrinum) from
November through May and subsequently with new
leaves of Sesbania sesban from June through August.
Daily cage inspections included the provision of
adequate ovipositional receptacles (10 cm deep)
loaded with sieved and sterilized sand that was
maintained wet at all times. To prevent the eggs
from drying out before they hatch, they were taken
from their nests and placed in glass jars (1-L ca-
pacity), wrapped with muslin fabric, and secured
with rubber bands. Grasshoppers were released
into the huge cage after four or five moults, soon
after hatching [20].

2.2. Chitin isolation and chitosan extraction

After adults were washed with distilled water,
dried at room temperature, and then crushed in a
mortar, they were pulverised. The chitin separation
method used forty grammes of ground material
from each insect species. The ground samples were
demineralized by soaking in 400 ml of 1 M HCL for
12 h at room temperature. Next, distilled water was
used to filter and rinse the samples many times.
Deproteinization was performed by treating 400 ml
of samples with 4 M NaOH at 90 �C for 8 h. The
samples were then filtered one more and washed in
distilled water. Chitin was extracted from the sam-
ples after they were decolored by passing them
through a combination of chloroform, methanol,
and distilled water in the ratio of (1: 2: 4) at room
temperature for 6 h and then rinsing them with
distilled water. Finally, chitosan was obtained by
deacetylating extracted chitin at 90 �C for 8 h using
50% NaOH. Then, chitosan samples were purified
by dissolving in 1% acetic acid and precipitated in
20% NaOH solution. Filtered samples were washed
in distilled water to pH neutrality and dried in a dry
heat sterilizer at 50 �C for 24 h [21].

2.3. Characterization of extracted chitosan

2.3.1. Solubility test
This characteristic is commonly used to pre-

liminary identify the extracted is chitosan, the chi-
tosan was tested for solubility in acetic acid 1% (v/v)
with a ratio 1 g: 100 ml [22].
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2.3.2. Fourier transform infrared spectroscopy (FT-IR)
At the Faculty of Pharmacy, Al-Azhar University

in Cairo, Egypt, the produced chitosan samples
were analyzed by Fourier transform infrared spec-
troscopy (FT-IR) using a JASCO FT-IR-6200 appa-
ratus. We used Akila's approach [23] to determine
the chitosan degree of deacetylation (DDA) as
follows.

DDA% ¼ 100- [(A1655/ A3450) � 100/1.33]

Where: A1655: Absorption of band at 1655 cm�1, A3450:
Absorption of band at 3450 cm�1, and ABand ¼ � log
(Transmittance).

2.3.3. X-ray diffraction (XRD)
At the Faculty of Pharmacy, Al-Azhar University

in Cairo, Egypt, an X-ray diffractometer (Panalytical
X'Pert Pro, Netherland) was used to examine the
products for phase identification, purity, relative
crystallinity, and crystallite size in the 2 q range from
4 to 70� at a scanning speed of 2� min�1. The radi-
ation source was CueK, and the filter was nickel.
According to Marei et al. [14], the following was
done to get the crystalline index (CrI) values from
the XRD data:

CrI110¼½ðI110� IamÞ= I110� � 100

Where: I110: maximum intensity at 2q y 20�, and
Iam: intensity of amorphous diffraction at 2q y 16�.

2.3.4. Scanning electron microscopy (SEM)
The Regional Center of Mycology and Biotech-

nology at Al-Azhar University in Cairo, Egypt, used
a scanning electron microscope (JEOL-JSM-5500
LV) in high vacuum mode to analyze chitosan's
surface morphology and microstructure. The sam-
ples were air-dried in a CO2 critical point drier
before being placed on scanning electron micro-
scope stubs (Tousimis Audosamdri-815). Gold was
spat onto the surface for 30 s as part of the coating
process in the SPI-Module. Between 10 and 20 KV,
the samples were analyzed.

2.4. Biological bioassay

2.4.1. Cytotoxic activity of the prepared chitosan
The National Research Centre in Dokki, Giza,

Egypt, provided HepG2, MCF-7, and WI-38 human
liver cancer, breast cancer, and lung fibroblast cell
lines. The cell lines were maintained at 37 �C in a
humidified 5% CO2 incubator with RPMI-1640
containing 10.0% fetal bovine serum (FBS), 100 mg/

ml penicillin, and 100 mg/ml streptomycin. After
incubation at 37 �C for 24 h, the samples dissolved in
Dimethyl sulfoxide (DMSO) to a full monolayer
sheet was formed in the 96-well tissue culture plate
that had been injected with 1 � 105 cells/ml (100 ml/
well). After the cells had produced a confluent sheet,
the growth medium in the 96-well microtiter plates
was drained, and the cell monolayer was washed
twice with wash media. The material under exami-
nation was diluted by a factor of two in RPMI me-
dium containing 2% serum (maintenance medium).
Each dilution was evaluated at a concentration of
0.1 ml in separate wells, while three wells served as
controls and received just maintenance medium.
The plate was kept in a 37 �C incubator for analysis.
Cells were examined for outward manifestations of
toxicity, such as loss of monolayer, rounding,
shrinkage, or granulation. Then, 5 mg/ml of phos-
phate-buffered saline (PBS) was used to make the
MTT solution (BIO BASIC CANADA INC). Each
well was supplemented with 20 ml of MTT solution.
Mix the MTT into the medium by shaking the
container at 150 rpm for 5 min After incubating the
cells (at 37 �C with 5% carbon dioxide) for 1e5 h,
various doses of chitosan (1000, 500, 250, 125, 62.5
and 31.25 mg/ml) were applied to determine how
much MTT was metabolized. Get rid of your media.
If any residue remains, wipe the plate with paper
towels. Formazan, a byproduct of MTT metabolism,
should be resuspended in 200 ml DMSO. Shake at
150 rpm for 5 min to fully incorporate the solvent
into the formazan. Using an ELX-800 Biotek-USA
ELISA reader, determine the optical density (OD) at
560 nm and remove the background at 620 nm.
There must be a one-to-oe relationship between
optical density and cell number [24].

The percentage of cell viability was calculated as
Cell viability (%) ¼ (Mean OD of treated wells/Mean
OD of control well) � 100

2.4.2. Anticoagulant assay: activated partial
thromboplastin time (APTT)
The APTT test was performed according to the

protocol described by Seedevi et al. [25]. Using a
commercially available kit, the APTT value was
calculated (Plasmatrol H-II, Liquicellin-E, BioMed).
In this test, 10 ml of citrated blood plasma was
combined with 25, 50 and 75 mg/ml of chitosan
concentration in a glass vial and incubated at 37 �C
for 1 h. After adding the 100 ml of Bovine Cephalin
and incubating the mixture for 3 min at 37 �C,
0.25 mM of pre-heated CaCl2 solution was added. At
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Al-Azhar University in Cairo, Egypt, the Regional
Center of Mycology and Biotechnology measured
and documented the clotting time.

2.4.3. Anticoagulant assay: Prothrombin Time (PT)
Chitosan's PT potential was determined using a

technique similar to that described by Seedevi et al.
[26]. After incubating the mixture at 37 �C for
10 min, 90 ml of citrated normal human plasma was
added to 10 ml of (25, 50 and 75 mg/ml) chitosan. The
clotting time was then measured at the Regional
Center of Mycology and Biotechnology at Al-Azhar
University in Cairo, Egypt, after combining 200 ml of
PT reagent (after incubation).

2.5. Statistical analysis

All examinations were done in triplicates and the
listed data are the average of the obtained results.

3. Results

3.1. Chitosan production and its preliminary
identification

Adult V. orientalis and A. thalassinus were sub-
jected to a range of processes, including deprotei-
nization, demineralization, decolorization, and
deacetylation, to extract chitosan. The confirmatory
test showed that the chitin was successfully deace-
tylated into chitosan because the color changed
from yellow to dark purple. Both V. orientalis and A.
thalassinus had an 8.2% and 10.8% recovery rate for
their chitosan, respectively.

3.2. Characterization of the extracted chitosan

3.2.1. Solubility test
The obtained chitosan powder was dissolved

completely in 1.0% acetic acid within shake by hand,

Fig. 1. The FT-IR spectra of the chitosan prepared from V. orientalis.

Fig. 2. The FT-IR spectra of the chitosan prepared from A. thalassinus.
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indicating that samples have a degree of deacety-
lation above 50.0%.

3.2.2. Fourier transform infrared spectroscopy (FT-IR)
The wavelength range used in the FT-IR analysis of

chitosan was 4000 to 400 cm�1. A large, strong band
at 3417 cm�1 was seen in the spectra of V. orientalis
chitosan. This region corresponds to the stretching
vibration of OH, the extension vibration of NeH, and
the hydrogen bonds between sugar molecules. The
asymmetric stretching vibration (CH2) in the CH2OH
group was identified as the source of the 2916 cm�1

absorption bands. N-deacetylation was successful
since an absorption peak in the amide I band (caused
by eC]O stretching of a hydrogen-bonded eC]
OeNHCOCH3 group) appeared at about 1635 cm�1.
It was determined that the bands at 1427 and

1381 cm�1 originated from the symmetric bending
(CH3) in the NHCOCH3 group and the bending
(CH2) in the CH2OH group, respectively. The com-
plex vibrations of the NHCO group were found to be
associated with the wave number at 1257 cm�1

(Amide III band). At 1149 cm�1, we analyzed the
CeOeC symmetric stretching vibration in the
glycosidic bond. The OH group's stretching vibration
(CeO) was detected at 1095 cm�1. The secondary OH
group's stretching vibration (CeO) was detected at
1033 cm�1. Also, the CeH out-of-plane vibration
(Pyranose ring skeletal vibrations) was given the
wave number of 902 cm-1 (Fig. 1). The chitosan
extracted from V. orientalis showed a DDA of 73.74%.
A. thalassinus chitosan exhibited an absorption

band at 3395 cm�1, attributed to the stretching vi-
bration of OH, the extension vibration of NeH, and

Fig. 3. The XRD pattern of chitosan extracted from V. orientalis.

Fig. 4. The XRD pattern of chitosan extracted from A. thalassinus.
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the hydrogen bonds between sugar molecules.
Assigning the 2924 cm�1 absorption band to the
CH2OH group's asymmetric stretching vibration
(CH2) was challenging. N-deacetylation was suc-
cessful since an absorption peak in the amide I band
(caused by eC]O stretching of a hydrogen-bonded
eC]OeNHCOCH3 group) appeared at about
1635 cm�1. It was determined that the bands at 1427
and 1381 cm�1 originated from the symmetric
bending (CH3) in the NHCOCH3 group and the
bending (CH2) in the CH2OH group, respectively.
Complex NHCO group vibrations were found to be
associated with the 1258 cm�1 wave number (Amide
III band). At 1149 cm�1, we analyzed the CeOeC
symmetric stretching vibration in the glycosidic
bond. At 1080 cm�1, a CeO stretching vibration was
detected in the OH group. The CeH out-of-plane
vibration (Pyranose ring skeletal vibrations) was
also attributed to the 903 cm�1 wave number (Fig. 2).
A. thalassinus chitosan showed a DDA of 72.95%.

3.2.3. X-ray diffraction (XRD)
Two distinct peaks at about 19.9 and 26.72� were

seen in the chitosan made by adult V. orientalis, and
one weak Peak at 9.56� was seen in the X-ray
diffraction measurements of the chitosan structures
taken in the range of 2 ¼ 4�e70� (Fig. 3). On the other

hand, chitosan extracted from A. thalassinus exhibited
one sharp Peak at 20.06� and two faint at 9.28 and
31.22� diffraction peaks (Fig. 4). The crystalline index
(CrI) for V. orientalis chitosan was recorded at 53.8%
vs. 77.7% by A. thalassinus chitosan.

3.2.4. Scanning electron microscopy (SEM)
An irregular masses and soft structure with some

pores on its surface, rough surface sequentially fish
scale shaped are observed for V. orientalis chitosan
(Fig. 5a and b). Also, chitosan extracted from A.
thalassinus showed interlaced structure, irregular
block, and microfibrils parallel with voids (Fig. 6a
and b).

3.3. Cytotoxic activity of the extracted chitosan

Data given in (Table 1, Figs. 7 and 8) showed
cytotoxicity of V. orientalis and A. thalassinus extrac-
ted chitosan on MCF-7. The cellular viability
revealed that a concentration of 1000 mg/ml from V.
orientalis chitosan induced a drastic decrease in
cellular viability with 17.99% cell viability, while
500 mg/ml induced 73.25% cell viability, and still
increased till the concentration reached 125 mg/ml
which showed 99.01% cell viability. The IC50 of V.
orientalis chitosan recorded 706.22 mg/ml. Also, A.

Fig. 5. The SEM images of chitosan from V. orientalis.

Fig. 6. The SEM images of chitosan from A. thalassinus.
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thalassinus chitosan showed cytotoxicity on MCF-7,
where cellular viability was recorded at 9.53 and
13.96% at 1000 and 500 mg/ml, respectively. The IC50

of A. thalassinus chitosan was 188.78 mg/ml.
Also, data in (Table 2, Figs. 9 and 10) illustrated

the cytotoxicity of V. orientalis and A. thalassinus
extracted chitosan against HepG2. The IC50 recor-
ded 643.48 and 185.85 mg/ml for both V. orientalis and
A. thalassinus extracted chitosan, respectively.
In addition, chitosan extracted from V. orientalis

exhibited noncytotoxic effects at concentrations less
than or equal to 250 mg/ml, while A. thalassinus
chitosan showed no cytotoxic effects at concentra-
tions �125 mg/ml against the WI-38 cell line (Table 3,
Figs. 11 and 12).

3.4. Anticoagulant activity of the extracted chitosan

Results in (Table 4) exhibited that anticoagulant
activity of V. orientalis extracted chitosan using APTT
assay showed 38.28 ± 0.07, 45.38 ± 0.02 and
53.7 ± 0.01 s at 25, 50 and 75 mg/ml, respectively.
While A. thalassinus chitosan reached 43.81 ± 0.02,
51.36 ± 0.01 and 58.91 ± 0.04 s at 25, 50 and 75 mg/ml,
respectively. On the other hand, the anticoagulant
activity of V. orientalis chitosan using PT assay
recorded 12.16 ± 0.07 s at 25 mg/ml, compared with
14.37 ± 0.02 s for A. thalassinus chitosan at the same
concentration. Accordingly, the results showed the
anticoagulant potential of chitosan was weaker than
the Heparin sodium salt (standard).

Table 1. Cytotoxic activity for V. orientalis and A. thalassinus chitosan against MCF-7 cell line.

Chitosan Conc.
mg/ml

Optical density (O.D) Mean O.D Standard
error (SE)

Viability % Toxicity % IC50 mg/ml

Control well 2:1 0.326 0.351 0.34 0.339 ± 0.01 0.007234 100 0 e

1000 0.062 0.058 0.063 0.061 ± 0.002 0.001528 17.99410029 82.00589971
500 0.241 0.236 0.268 0.248 ± 0.01 0.009939 73.2546706 26.7453294
250 0.322 0.353 0.326 0.333 ± 0.0.1 0.009735 98.42674533 1.573254671 706.22

V. orientalis 125 0.347 0.331 0.329 0.335 ± 0.009 0.005696 99.01671583 0.983284169
62.5 0.335 0.336 0.327 0.332 ± 0.004 0.002848 98.13176008 1.868239921
31.25 0.346 0.321 0.35 0.339 ± 0.01 0.009074 100 0
1000 0.032 0.025 0.04 0.032 ± 0.007 0.004333 9.537856441 90.46214356
500 0.033 0.062 0.047 0.047 ± 0.01 0.008373 13.9626352 86.0373648

A. thalassinus 250 0.124 0.092 0.106 0.107 ± 0.01 0.009262 31.66175025 68.33824975 188.78
125 0.215 0.232 0.247 0.231 ± 0.01 0.009244 68.23992134 31.76007866
62.5 0.301 0.316 0.299 0.305 ± 0.009 0.005364 90.06882989 9.931170108
31.25 0.325 0.319 0.338 0.327 ± 0.009 0.005608 96.55850541 3.441494592

Fig. 7. Morphological changes of MCF-7 cell lines treated with V. orientalis chitosan.
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4. Discussion

The absorption peak of the amide I band (owing to
eC]O stretching of hydrogen bound eC]
OeNHCOCH3 group) arises at roughly 1635 cm�1

for both V. orientalis and A. thalassinus isolated chi-
tosan, as shown by Fourier transform infrared
spectroscopy (FT-IR). These results agreed with the
previously mentioned by Wanule et al. [27], who
stated that FT-IR Spectra for chitosan derived from
Periplaneta americana showed a peak at 3400 cm�1,
indicating symmetric stretching vibration of OH and
amine NeH 2923.88 cm�1 indicate the presence of
CH stretch, 1650.95 was due to C]O stretching
(amide I) 1095.49 and 1033.77 peaks for CeO
stretching and Peak at 894.91 is a ring stretching a
characteristic bond for b-1-4 glycosidic linkage.

Also, chitosan extracted from V. orientalis adults
recorded the highest degree of deacetylations
(DDA) (73.74%), compared with A. thalassinus
extracted chitosan (DDA: 72.95%). Similar results
were recorded by Battampara et al. [28], where the
DDA% of chitosan derived from silkworm pupae
was 67.0%, compared with 59.0% for the eggshell
chitosan, maximum DDA % of chitosan isolated
from shrimp (Panaeus monodon), crab (Scylla olivicea
and Scylla serrata), locust (Schistocerca gregaria),
honeybee (Apis mellifera), beetle (Calosoma rugosa),
and fish scales (Labeo rohita) was 95.0e98.0% [16].
In addition, The X-ray diffraction (XRD) mea-

surements also showed two sharp peaks for chitosan
extracted from V. orientalis at approximately 19.9 and
26.72� and one faint peaks at 9.56�. While chitosan
extracted from A. thalassinus exhibited one sharp

Fig. 8. Morphological changes of MCF-7 cell lines treated with A. thalassinus chitosan.

Table 2. Cytotoxic activity for V. orientalis and A. thalassinus chitosan against HepG2 cell line.

Chitosan Conc.
mg/ml

Optical density (O.D) Mean O.D Standard
error (SE)

Viability % Toxicity % IC50 mg/ml

Control well 2:1 0.346 0.362 0.342 0.35 ± 0.01 0.00611 100 0 e
1000 0.085 0.072 0.069 0.075 ± 0.008 0.00491 21.52380952 78.47619048
500 0.186 0.194 0.197 0.192 ± 0.005 0.003283 54.95238095 45.04761905
250 0.287 0.301 0.316 0.301 ± 0.01 0.008373 86.0952381 13.9047619 643.48

V. orientalis 125 0.358 0.339 0.35 0.349 ± 0.009 0.005508 99.71428571 0.285714286
62.5 0.338 0.359 0.351 0.349 ± 0.01 0.006119 99.80952381 0.19047619
31.25 0.342 0.338 0.352 0.344 ± 0.007 0.004163 98.28571429 1.714285714
1000 0.062 0.044 0.053 0.053 ± 0.009 0.005196 15.14285714 84.85714286
500 0.084 0.062 0.072 0.072 ± 0.01 0.00636 20.76190476 79.23809524
250 0.092 0.108 0.113 0.104 ± 0.01 0.006333 29.80952381 70.19047619

A. thalassinus 125 0.245 0.236 0.228 0.236 ± 0.008 0.00491 67.52380952 32.47619048 185.85
62.5 0.315 0.328 0.326 0.323 ± 0.007 0.004041 92.28571429 7.714285714
31.25 0.351 0.344 0.352 0.349 ± 0.004 0.002517 99.71428571 0.285714286
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peaks at 20.06� and two faint at 9.28 and 31.22�

diffraction peaks. The crystalline index (CrI) for V.
orientalis chitosan was recorded at 53.8% vs. 77.7%
recorded by A. thalassinus chitosan, respectively.
These findings are consistent with those of [29],
which found that chitosan from silkworm pupae
had a crystallinity of 48.0% compared to 38.0% from

egg shells [28], and which used XRD to illustrate
differentiation between chitin and chitosan derived
from Tenebrio molitor cuticle [30].
Scanning Electron Microscopy (SEM) showed

irregular masses and a soft structure with some
pores on its surface; rough surface sequentially fish
scale shaped are observed for V. orientalis chitosan.

Fig. 9. Morphological changes of HepG2 cell lines treated with V. orientalis chitosan.

Fig. 10. Morphological changes of HepG2 cell lines treated with A. thalassinus chitosan.
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Also, chitosan extracted from A. thalassinus showed
interlaced structure, irregular block, and microfi-
brils parallel with voids. In agreement with the
present results, Kaya et al. [31] reported that SEM
studies of chitosan extracted from Leptinotarsa
decemlineata larva and adult revealed that these
structures consisted of nanofibers, Marei et al. [14]
found that SEM analysis of chitosan extracted from
different local sources (shrimp, Penaeus monodon;
desert locust, S. gregaria; honey bee, A. mellifera, and
beetles, C. rugosa) indicated dense nanofibers sur-
face structure of shrimp, locust and beetle chitosan
and hard rough surface of honey bee chitosan and

Aloucheh et al., [32] recorded that, chitosan from the
aquatic beetles (Hydraenidae) is segregated chito-
san has a smooth surface with amorphous property
according to the SEM images.
Obtained data of cytotoxic activity of both

extracted chitosan samples revealed that the cellular
viability of the MCF-7 cell line recorded at 17.99 and
9.53% by V. orientalis and A. thalassinus extracted
chitosan at 1000 mg/ml, respectively. In addition, at
500 mg/ml, the viability of the HepG2 cell line was
recorded 54.95 and 20.76% by V. orientalis and A.
thalassinus, respectively. On the other hand, V. ori-
entalis and A. thalassinus extracted chitosan showed

Table 3. Cytotoxic activity for V. orientalis and A. thalassinus chitosan against WI-38 cell line.

Chitosan Conc. mg/ml Optical
density
(O.D)

Mean O.D Standard
error (SE)

Viability % Toxicity %

Control well 2:1 0.371 0.383 0.386 0.38 ± 0.007 0.004583 100 0
1000 0.083 0.091 0.108 0.094 ± 0.01 0.007371 24.73684211 75.26315789
500 0.289 0.312 0.307 0.302 ± 0.01 0.006984 79.64912281 20.35087719
250 0.384 0.374 0.388 0.382 ± 0.007 0.004163 100.5263158 0

V. orientalis 125 0.375 0.388 0.38 0.381 ± 0.006 0.003786 100.2631579 0
62.5 0.369 0.392 0.384 0.381 ± 0.01 0.006741 100.4385965 0
31.25 0.39 0.372 0.379 0.380 ± 0.009 0.005239 100.0877193 0
1000 0.095 0.105 0.106 0.102 ± 0.006 0.003512 26.84210526 73.15789474
500 0.241 0.216 0.235 0.230 ± 0.01 0.007535 60.70175439 39.29824561

A. thalassinus 250 0.314 0.325 0.336 0.325 ± 0.01 0.006351 85.52631579 14.47368421
125 0.384 0.372 0.373 0.376 ± 0.006 0.003844 99.03508772 0.964912281
62.5 0.388 0.386 0.374 0.382 ± 0.007 0.004372 100.7017544 0
31.25 0.362 0.394 0.382 0.379 ± 0.01 0.009333 99.8245614 0.175438596

Fig. 11. Morphological changes of WI-38 cell lines treated with V. orientalis chitosan.
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noncytotoxic effects against the WI-38 cell line at
concentrations less than or equal to 250 and 125 mg/
ml, meaning their side effects are low. These find-
ings are consistent with those of Ai et al. [33], who
found that chitosan extracted from Musca domestica
housefly larvae inhibited the growth of human cer-
vical carcinoma (HeLa) and mouse sarcoma-180 (S-
180) tumor cell lines in vitro at doses as low as
1.0 mg/mL (50.8 and 52.9% inhibition, respectively),
and with those of [10], who studied the anticancer
activity of chitosan prepared from The American
cockroach against HepG2 and MCF-7 cell lines and
reported that cytotoxicity has a positive relationship
with the chitosan concentration, IC50 values were
recorded 329 and 195 mg/ml, respectively.
Results showed that anticoagulant activity of V.

orientalis and A. thalassinus extracted chitosan using
APTT assay recorded 53.7 ± 0.01 and 58.91 ± 0.04 s at
75 mg/ml, compared with 115.1 ± 0.01 s for heparin

sodium salt. Also, the anticoagulant activity of V.
orientalis chitosan using PT assay was recorded at
12.16 ± 0.07 s at 25 mg/ml, compared with
14.37 ± 0.02 s for A. thalassinus chitosan at the same
concentration, respectively. Both studies showed
that extracted chitosan had a lesser anticoagulant
capability than heparin and required a greater
dosage to match that of the commercial anticoagu-
lant (Heparin sodium salt) (APTT and PT). These
results are in consistent with the previously recor-
ded results by Arasukumar et al. [34], who
employed APTT and PT tests to investigate the
anticoagulant activity of chitosan derived from
Thenus unimaculatus, using heparin sodium as the
reference standard, anticoagulant activity of T.
unimaculatus chitosan was recorded at 49.7 and 20.9 s
at 50 mg/ml by APTT and PT assays, respectively.
Compared with 61.2 and 31.4 s recorded by heparin,
respectively, and [35] who reported that

Fig. 12. Morphological changes of WI-38 cell lines treated with A. thalassinus chitosan.

Table 4. Anticoagulant activity of extracted chitosan and heparin based on APTT and PT assays.

Assay Conc.
mg/ml

Anticoagulant Values in sec. caused by
chitosan

Heparin sodium
salt (standard)

V. orientalis A. thalassinus

Activated partial thromboplastin
time (APTT)

25 38.28 ± 0.07 43.81 ± 0.02 61.2 ± 0.07
50 45.38 ± 0.02 51.36 ± 0.01 84.5 ± 0.01
75 53.7 ± 0.01 58.91 ± 0.04 115.1 ± 0.01

Prothrombin
time (PT)

25 12.16 ± 0.07 14.37 ± 0.02 26.49 ± 0.01
50 14.57 ± 0.03 14.83 ± 0.02 39.19 ± 0.01
75 18.86 ± 0.03 17.23 ± 0.02 51.59 ± 0.01
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anticoagulant activity of the different types of blue
crab chitosan recorded 31.2, 14.8 and 14.4 s using
APTT, Quick time (QT), and thrombin time (TT),
respectively in vitro assays.

4.1. Conclusion

Chitosan were successfully produced from V. ori-
entalis and A. thalassinus adults, the yield of chitosan
were recorded 8.2 and 10.8%, respectively, and
showed a DDA% 73.74 and 72.95%, respectively.
The (CrI) recorded 53.8% for V. orientalis chitosan vs.
77.7% by A. thalassinus chitosan. Both extracted
chitosan can be a potential natural compound for
the treatment of tumor cells (MCF-7 and HepG2).
Also, V. orientalis and A. thalassinus exhibited anti-
coagulant potential depended on concentrations in
APTT and PT assays. From the results of the present
study, the chitosan can be used as a promising
anticoagulant activity and anticancer agents, to be
applied in biomedical applications due to its
nontoxic nature.
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