[Al-Azhar Bulletin of Science](https://absb.researchcommons.org/journal)

[Volume 34](https://absb.researchcommons.org/journal/vol34) | [Issue 2](https://absb.researchcommons.org/journal/vol34/iss2) [Article 8](https://absb.researchcommons.org/journal/vol34/iss2/8) Article 8

2023

Section: Mathematics and Statistics

Soft Topological Notions Via Molodtsov Model

A.A. Nasef

Department of Physics and Engineering Mathematics, Faculty of Engineering , Kafrelsheikh University, Kafrelsheikh (33516), Egypt.

A.I. Aggour Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

A. Fathy

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt., ahmedfathy@azhar.edu.eg

S.M. Darwesh Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

Follow this and additional works at: [https://absb.researchcommons.org/journal](https://absb.researchcommons.org/journal?utm_source=absb.researchcommons.org%2Fjournal%2Fvol34%2Fiss2%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages)

How to Cite This Article

Nasef, A.A.; Aggour, A.I.; Fathy, A.; and Darwesh, S.M. (2023) "Soft Topological Notions Via Molodtsov Model," Al-Azhar Bulletin of Science: Vol. 34: Iss. 2, Article 8. DOI:<https://doi.org/10.58675/2636-3305.1648>

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh_Mekheimer@azhar.edu.eg.

ORIGINAL ARTICLE Soft Topological Notions via Molodtsov Model

Arafa A[b](#page-1-1)del-zaher Nasef $a, *$ $a, *$, Atef Ibrahim Aggour $^{\rm b}$, Ahmed Fathy $^{\rm b}$, Saad Mohamed Darwesh^{[b](#page-1-1)}

a Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt ^b Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Abstract

In the present paper, we introduce a new concept of soft sets called soft $g(\beta, \omega)$ -closed sets. Also, we study the basic properties of this new concept and we investigate the relation between soft $g(\beta,\omega)$ -closed sets and some of the other soft sets. Finally, we introduce the concept of soft $g(\beta, \omega)$ -continuous map and we study the relationship between the new concept and some of the other types of soft continuity.

2010 Mathematics Subject Classification: 54B05, 54C08, 54D05

Keywords: Soft $g(\beta, \omega)$ closed set, Soft $g(\beta, \omega)$ -continuous map, Soft set

1. Introduction

M olodtsov [\[1](#page-4-0)] introduced the soft set in 1999. The soft sets were employed in application by Maji et al. Furthermore, soft information is a particular information class. Shabir and Naz explored some more fundamental features and introduced the soft topological space in [\[2](#page-4-1)]. Following that, some topological research discovered several fresh varieties of near soft open sets and investigated both their individual and interrelated characteristics. K. Kannan first discussed the idea of a soft generalised closed set in [[3\]](#page-4-2). Many different soft generalised closed set types were then defined by various topologists. In this article, we introduced a brand-new class of soft generalised sets termed soft (β, ω) -closed and described its fundamental characteristics. Recent years have seen a significant growth in the number of articles regarding soft sets and their applications in numerous disciplines, as demonstrated in $[4-6]$ $[4-6]$ $[4-6]$ $[4-6]$ $[4-6]$.

2. Preliminaries

In this section, we present the basic definition and some results of soft set theory. Let \Re be a universal set and κ be the set of parameters, $P(\Re)$ is the power set of \Re , $A \subseteq \kappa$ and the soft set will be denoted by S-set.

Received 18 June 2023; revised 25 July 2023; accepted 27 July 2023. Available online 13 October 2023

Definition 2.1 [\[1](#page-4-0)]. A S-set (Ω, A) on \Re is defined
by the set of ordered pairs ordered $(\Omega, A) = \{(\hbar, \Omega_A(\hbar)) : \hbar \in \kappa, \Omega_A(\hbar) \in P(V)\},\qquad \text{where}$ $\Omega_A : A \rightarrow P(\mathfrak{R}).$

Definition 2.2 [[1,](#page-4-0)[7](#page-4-4)]. A S-set (Ω, A) is called null Sset if for all, $\hbar \in A$, then $\Omega(\hbar) = \varphi$ and its denoted by $\tilde{\phi}$. A S-set (Ω, A) is called absolute S-set if for all $a \in \mathcal{Z}$ $A, \Omega(h) = \Re$ and its denoted by \Re .

Definition 2.3 [[1,](#page-4-0)[7](#page-4-4)]. Let (Ω, A) and (Ψ, β) be two Ssets over \mathfrak{R} . Then, the union of (Ω, A) and (Ψ, β) is a S-set (H, C) where $C = (A \cup \beta)$ and
 $H(h) = \Omega(h)$ if $h \in A - \beta, h$

 $H(h) = \Omega(h)$ if $h \in A -$
= $A - A$ $H(h) - \Omega(h)$ $\hbar \in A - \beta$, $H(\hbar) = \Psi(\hbar)$ if $\hbar \in \beta - A$, $H(\hbar) = \Omega(\hbar) \cup \Psi(\hbar)$ if $\hbar \in A \cap \beta$.
Definition 2.4 [1.7] Let (Ω, A) and (Ψ, A)

Definition 2.4. [\[1](#page-4-0),[7\]](#page-4-4) Let (Ω, A) and (Ψ, β) be two Ssets over \mathfrak{R} . The intersection of (Ω, A) and (Ψ, β) is a S-set (F, D) where $D = A \cap \beta$, $F(\hbar) = \Omega(\hbar) \cap \Psi(\hbar)$, for all $\hbar \in D$.

Definition 2.5. [\[1](#page-4-0)[,7](#page-4-4)] A S-set (Ω, A) is called a Ssubset of (Ψ, β) if $A \subseteq \beta$ and $\Omega(\hbar) \subseteq \Psi(\hbar)$ for all $a \in A$. We write $(\Omega, A)\tilde{\subseteq}(\Psi, \beta)$.

Definition 2.6 [[1](#page-4-0)[,7](#page-4-4)]. Let $(\Omega, \kappa), (\Psi, \kappa)$ be two S-sets over \mathcal{R} . Then, the difference of $(\Omega, \kappa), (\Psi, \kappa)$ is denoted by $(H, C) = (\Omega, \kappa) \setminus (\Psi, \kappa)$ such that $H(C) =$ $\Omega(\hbar) \setminus \Psi(\hbar)$ for all \hbar in A.

Definition 2.7. [[1,](#page-4-0)[7](#page-4-4)] The relative complement of (Ω, A) is denoted by $(\Omega, A)^c = (\Omega^c, A)$ where $\Omega^c : A \rightarrow$
 $P(\Re)$ given by $Q^c(\hbar) = \Re \setminus Q(\hbar)$ for all \hbar in A $P(\Re)$ given by $\Omega^c(\hbar) = \Re \setminus \Omega(\hbar)$ for all \hbar in A.

* Corresponding author. E-mail address: ahmedfathy@azhar.edu.eg (A.A.-z. Nasef).

<https://doi.org/10.21608/2636-3305.1648>

^{2636-3305/}© 2023, The Authors. Published by Al-Azhar university, Faculty of science. This is an open access article under the CC BY-NC-ND 4.0 Licence [\(https://creativecommons.org/licenses/by-nc-nd/4.0/](https://creativecommons.org/licenses/by-nc-nd/4.0/)).

Definition 2.8 [\[2](#page-4-1).[8\]](#page-4-5). Let τ be a collection of S-sets over \Re . Then, τ is called a S-topology on \Re if the following axioms are satisfied:

(1) $\tilde{\varphi}$, $\Re \in \tau$.

- (2) The union of arbitrary S-sets in τ belongs to τ
- (3) The intersection of two S-sets in τ belongs to τ .

The triple (\Re, τ, κ) is called a S-topological space and the members of τ are called S-open sets and its complement are called S-closed sets.

Definition 2.9. [\[2](#page-4-1),[8\]](#page-4-5) The S-interior of (Ω, κ) is the union of all S-open sets of topological space (\Re, τ, κ) contained in (Ω, κ) and its denoted by int (Ω, κ) .

Definition 2.10. [\[2](#page-4-1),[8\]](#page-4-5) The S-closure of (Ω, κ) is the intersection of all S-closed sets containing and its denoted by $cl(\Omega, \kappa)$.

Definition 2.11. $[6,9-11]$ $[6,9-11]$ $[6,9-11]$ $[6,9-11]$ $[6,9-11]$ Let (\Re, τ, κ) be a S-topological space. Then, (Ω, κ) is said to be:

- (1) A S- α -open set if $(\Omega, \kappa) \tilde{\subseteq}$ int $(cl(int(\Omega, \kappa)))$.
- (2) A S-semi-open set if $(\Omega, \kappa) \tilde{\subseteq} cl(int(\Omega, \kappa))$
- (3) A S-pre open set if (Ω, κ) $\tilde{\subseteq}$ int $(cl(\Omega, \kappa))$.
- (4) A S-b-open set if (Ω, κ) ⊆int $(cl(\Omega, \kappa))$ ∪cl $(int(\Omega, \kappa))$.
- (5) A S- β -open set if $(\Omega, \kappa) \subseteq \mathcal{C}$ l(int $(cl(\Omega, \kappa))$).

The family of all $S-\alpha$ -open (resp. S-semi-open, Spre open, S-b-open and S- β -open) sets in a S-topological space (\Re, τ, κ) , is denoted by SaO (resp. SSO, SPO , SbO and $S\beta O$.

Definition 2.12. [[6](#page-4-6)[,9](#page-4-7)–[11\]](#page-4-7) A S-set (Ω, κ) of a S-topological space (\Re, τ, κ) is called S- α -closed (resp. Ssemi-closed, S-pre closed, S-b-closed and S- β -closed) sets if its complements is S- α -open (resp. S-semi-open, S-b-open and S- β -open) sets.

Definition 2.13. [[6,](#page-4-6)[9](#page-4-7)–[11\]](#page-4-7) Let (\Re, τ, κ) be a S-topological space and (Ω, κ) be a S-set. Then, The, intersection of all $S-\alpha$ -closed (resp. S-semi-closed, S-pre closed, S-b-closed and S- β -closed) sets containing (Ω, κ) is called S- α -closure (resp. S-semiclosure, S-pre closure, S-b-closure and S- β -closure) of (Ω, κ) and its denoted by $S \alpha c l(\Omega, \kappa)$ (resp. $S \delta c l(\Omega, \kappa)$) κ), SPcl (Ω, κ) ,

- (1) $Sbcl(\Omega,\kappa)$ and $S\beta cl(\Omega,\kappa)$.
- (2) The union of all S- α -open (resp. S-semi-open, Spre open, S-b-open and S- β -open) sets containing in (Ω, κ) is called S- α -interior (resp. S-semiinterior, S-pre interior, S-b- interior and S- β interior) of (Ω, κ) and it is denoted by S_{α} int (Ω, κ) (resp. SSint(Ω , κ), Spint(Ω , κ), Sbint(Ω , κ) and $S\beta$ int (Ω,κ) .

Definition 2.[14](#page-4-8). $[12-14]$ $[12-14]$ $[12-14]$ A S-subset (Ω, κ) of a Stopological space (\Re, τ, κ) is called:

- (1) A S-generalized closed set (sg-closed) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-open implies that $cl(\Omega,\kappa)\subseteq(\Psi,\kappa)$
- (2) A S-semi-generalized closed set (SSg-closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-semi-open implies that $S\mathcal{S}cl(\Omega,\kappa)\subseteq(\Psi,\kappa)$
- (3) A generalized S-semi-closed set (SgS-closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-open implies that $SScl(\Omega,\kappa)\subseteq(\Psi,\kappa)$
- (4) A S- α -generalized closed set (S α g-closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S- α -open implies that $SScl(\Omega,\kappa)\subseteq(\Psi,\kappa)$
- (5) A S-generalized α -closed set (Sg α -closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-open implies that $S \alpha c l(\Omega, \kappa) \subseteq (\Psi, \kappa).$
- (6) A S- α -closed set (S ω -closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-semi-open set implies that Scl (Ω, κ) $k\in(\Psi,\kappa).$
- (7) A S-generalized pre closed set (Sgp-closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-open set implies that $Spcl(\Omega,\kappa)\subseteq(\Psi,\kappa).$

Definition 2.15. [\[15](#page-4-9)] A map $\mathbb{O}: (\Re, \tau, \kappa)$ (V, τ', κ') is illed: called:

- (i) A S-continuous map if $\mathbb{U}^{-1}(\Omega', \kappa')$ is a S-open
set in $(\mathfrak{M} \tau \kappa)$ for every S-open set (Ω', κ') in set in $(\mathfrak{R}, \tau, \kappa)$, for every S-open set (Ω', κ') in (V, τ', κ') $(V, \tau', \kappa').$
- (ii) A S- α continuous map if $\sigma^{-1}(\Omega', \kappa')$ is a α -S-
open set in $(\Re \tau, \kappa)$ for every S-open set open set in (\Re, τ, κ) , for every S-open set (Ω', κ') in (V, τ', κ') .
A S-semi continuo
- (iii) A S-semi continuous map if $\sigma^{-1}(\Omega', \kappa')$ is a S-
semi-open set in $(\Re \tau \kappa)$ for every S-open set semi-open set in (\Re, τ, κ) , for every S-open set (Ω', κ') in $(V, \tau', \kappa').$

3. A Soft generalized (β, ω) -closed set

Definition 3.1. Let (\Re, τ, κ) be a S-topological space. If $(\Omega, \kappa) \subseteq (\Re, \kappa)$ and (\Re, κ) is S- ω -open set implies that $\beta cl(\Omega,\kappa) \subseteq int(\Re,\kappa)$, then (Ω,κ) is called a S-generalized $g(\beta,\omega)$ closed set. The set of all Sgeneralized $g(\beta,\omega)$ closed sets is denoted by $S_g(\beta,\omega)$ ω)c.

In this paper, we consider $\mathfrak{R} = {\mathfrak{R}_1, \mathfrak{R}_2}$ and $=$ ${\hbar_1, h_2}, (\Omega, \kappa) = \Re = {\hbar_1, \Re}, (\hbar_2, \Re), (\Omega_2, \kappa) = \tilde{\phi} =$ $\{(\hbar_1,\phi),(\hbar_2,\phi)\},(\Omega_3,\kappa)=\{(\hbar_1,\{\Re_1\}),(\hbar_2,\{\Re_1\})\},(\Omega_4,\phi)$ $\kappa) = \{(\hbar_1, \{\Re_2\}), (\hbar_2, \{\Re_2\})\}, (\Omega_5, \kappa) = \{(\hbar_1, \Re), (\hbar_2, \nabla), \Psi_3, (\hbar_3, \nabla), \Psi_4, (\hbar_4, \nabla), \Psi_5, (\hbar_5, \nabla), \Psi_6, (\hbar_7, \nabla), \Psi_7, (\hbar_8, \nabla), \Psi_8, (\hbar_9, \nabla), \Psi_9, (\hbar_3, \nabla), \Psi_8, (\hbar_3, \nabla), \Psi_9, (\hbar_3, \nabla), \Psi_9, (\hbar_$ ϕ },

 $(\Omega_6, \kappa) = \{(\hbar_1, \Re), (\hbar_2, \Re_1)\}, (\Omega_7, \kappa) = \{(\hbar_1, \Re), (\hbar_2, \Re)\}$ ${\Re_2}\}\;\; (\Omega_8,\kappa) = {\hbox{(\hbar_1,ϕ)}},$

 $(\hbar_2, {\Re_1})\}, (\Omega_9, \kappa) = {\hbar_1, \phi}, (\hbar_2, {\Re_2})\}, (\Omega_{10}, \kappa) =$ $\{(\hbar_1,\{\Re_1\}),(\hbar_2,\{\Re_2\})\},\$

 $(\Omega_{11}, \kappa) =$ $\{(\hbar_1, \phi), (\hbar_2, \mathfrak{R})\}, (\Omega_{12}, \kappa) = \{(\hbar_1, \{\mathfrak{R}_1\}), (\hbar_2, \mathfrak{R})\},\$ $(\Omega_{13}, \kappa) = \{(\hbar_1, {\Re_2}\}),$

 $(\hbar_2,\mathfrak{R})\}, (\Omega_{14}, \kappa) = \{(\hbar_1,\{\mathfrak{R}_1\}),(\hbar_2,\phi)\}, (\Omega_{15}, \kappa) =$ $\{(\hbar_1,\{\Re_2\}),(\hbar_2,\phi)\},\$

 $(\Omega_{16}, \kappa) = \{(\hbar_1, {\Re_2}\}), (\hbar_2, {\Re_2}\})\}$

Example 3.1. Let $\tau = {\Re, \tilde{\phi}, \Omega_3, \Omega_6, \Omega_{13}}$. Then, $\tau^c =$ $\{\Re, \phi, \Omega_4, \Omega_9, \Omega_{15}\}.$ We have that $g(\beta, \omega)c = \{\Omega_1, \Omega_2, \Omega_4\}$ $\Omega_4, \Omega_5, \Omega_7, \Omega_9, \Omega_{11}, \Omega_{13}, \Omega_{15}, \Omega_{16}$.

Proposition 3.1. A S-set (Ω, κ) is S- ω -open if and inly if $(\Psi, \kappa) \subseteq int(\Omega, \kappa)$, whenever (Ψ, κ) is S-semiclosed and $(\Psi, \kappa) \subseteq (\Omega, \kappa)$.

Proof. Let (Ω, κ) be S- ω -open. Then (Ω^c, κ) is a S-
closed set So $cl(O^c, \kappa) \widetilde{C}(\Psi, \kappa)$ whenever (O^c, κ) ω-closed set. So, $cl(\Omega^c, \kappa)\tilde{\subseteq}(\Psi, \kappa)$, whenever $(\Omega^c, \kappa)\tilde{\subset}(\Psi, \kappa)$ where (Ψ, κ) is S-semi-open. Hence $k(\mathcal{L}(\Psi_1, k))$, where (Ψ_1, k) is S-semi-open. Hence, (Ψ_1^c, κ) is S-semi-closed and so int $(cl(\Psi^c, \kappa))\tilde{\subseteq}(\Psi^c, \kappa)$.
If we assume that $\Psi^c = \Psi$ then int $(cl(\Psi, \kappa))\tilde{\subset}(\Psi, \kappa)$. If we assume that $\Psi_1^c = \Psi$, then $int(cl(\Psi, \kappa)) \tilde{\subseteq} (\Psi, \kappa)$.
Since $cl(J\mathcal{E} - \kappa) \tilde{\subseteq} (\mathcal{E} - \kappa)$ then $J\mathcal{E} - \kappa \tilde{\subseteq} (\mathcal{E} - \kappa)$. Since $cl(\psi^c, \kappa) \tilde{\subseteq} (\psi, \kappa)$, then $(\psi, \kappa) \tilde{\subseteq} int(\Omega, \kappa)$.
Conversely let (Q, κ) be a S-set such that Conversely, let (Ω, κ) be a S-set such that (ψ, κ) $\tilde{\subseteq}$ int (Ω, κ) whenever (ψ, κ) is S-semi-closed and $(\psi, \kappa) \tilde{\subseteq} (\Omega, \kappa)$. Then, $(\Omega^c, \kappa) \tilde{\subseteq} (\psi^c, \kappa)$, wherever (ψ^c, κ) is
S-semi-open set implied that S-semi-open set implied that $(\Omega^c, \kappa) \tilde{\subseteq} (\psi^c, \kappa) \tilde{\subseteq} cl(\text{int}(\psi^c, \kappa))$ then $cl(\Omega^c, \kappa) \subseteq cl(\text{int}(\psi^c, \kappa))$. κ)). Since

 $[cl(int(\psi^c, \kappa))]$ is semi-open set, then (Ω^c, κ) is S-
closed set and so (Q, κ) is S- ω -open ω -closed set and so (Ω, κ) is S- ω -open.

Proposition 3.2. Every S-semi-closed set is a $Sg(\beta,\omega) - C$ set.
Proof Let ω

Proof. Let (ψ, κ) be a S-semi-closed set and (ψ, κ) $\kappa \tilde{\subseteq} (\Omega, \kappa)$, where (Ω, κ) is S- ω -open set. By Proposition 3.1, we have that $(\psi, \kappa) \tilde{\subseteq} \text{int}(\Omega, \kappa)$. Also, since (ψ, κ) is S-semi-closed, then (ψ, κ) is S- β -closed, and so

 $S\beta cl(\psi, \kappa) = (\psi, \kappa) \tilde{\subseteq} int(\Omega, \kappa)$. Hence (ψ, κ) is a $Sg(\beta,\omega) - C$ set.
We not that if

We not that the converse of the proposition 3.2 may not be a true, in general as shown in Example 3.1.

Example 3.2. Continue to Example 3.1, we have that S-sets.

 $\{\Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{14}, \Omega_{16}\}$ are $S - (\beta, \omega)$ -closed
ts but not S-semi-closed sets sets but not S-semi-closed sets.

Proposition 3.3. Every S-closed set is a $Sg(\beta,\omega)$ — C
+ set.

Proof. Let (ψ, κ) be a S-closed set and $(\psi, \kappa) \subseteq (\Omega, \kappa)$, where (Ω, κ) is S- ω -open. Then, by Proposition 3.1 $(\psi, \kappa) \subseteq \text{int}(\Omega, \kappa)$. Since (ψ, κ) is a S-closed set, then (ψ, κ) is a S- β -closed set and then $S\beta cl(\psi, \kappa) = (\psi, \kappa) \subseteq$ $int(\Omega, \kappa)$. Hence, (ψ, κ) is $Sg(\beta, \omega) - C$
We note that the converse of the

We note that the converse of the proposition 3.3 may not be a true, in general as shown in Example 3.1.

Example 3.3. Continue to Example 3.1, we have that the S-sets.

 $\{\Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{16}\}$ are $Sg(\beta, \omega) - C$ sets but
of S-closed sets not S-closed sets.

Proposition 3.4. Every S- α -closed set is a $Sg(\beta,\omega)$ – C set.

Proof. Let (ψ, κ) be a S- α -closed set and $(\psi, \kappa) \subseteq (\Omega, \kappa)$ κ), where (Ω, κ) is S-W-open. Then, by Lemma 3.1 we have that $(\psi, \kappa) \subseteq int(\Omega, \kappa)$. Since (ψ, κ) be S- α -closed, then (ψ, κ) is a S- β -closed and $S\beta cl(\psi, \kappa) =$ $(\psi, \kappa) \subseteq int(\Omega, \kappa)$. Hence, (ψ, κ) is $S_g(\beta, \omega) - C$ set.
We note that the converse of the proposition

We note that the converse of the proposition 3.4 may not be a true, in general as shown in Example 3.1.

Example 3.4. Continue to Example 3.1, we have that the S-set Ω_5 is $S_g(\beta,\omega) - C$ set but not S-
o-closed α -closed.

Proposition 3.5. Arbitrary intersection of $Sg(\beta,\omega) - C$ sets is also $Sg(\beta,\omega) - C$ set.
Proof Let (O, κ) be $Sg(\beta,\omega) - C$ sets

Proof. Let $(\Omega_{\lambda}, \kappa)$ be $Sg(\beta, \omega) - C$ sets in the S-to-
plogical space $(\Re \tau \kappa)$ Then $Sg(\Omega(\Omega, \kappa) \text{Cint}(\Re, \kappa))$ pological space (\Re, τ, κ) . Then, $S\beta cl(\Omega_\lambda, \kappa) \subseteq int(\Re_\lambda, \kappa)$, for each λ , whenever $(\Omega_{\lambda}, \kappa) \subseteq (\Re_{\lambda}, \kappa)$, are S- ω -open sets. Hence, we have that $\cap_{\lambda}S\beta cl(\Omega_{\lambda},\kappa)\subseteq \cap_{\lambda}int(\Re_{\lambda},\kappa)$, for each λ , whenever $\cap_{\lambda}(\Omega_{\lambda}, \kappa)\subseteq (\Re_{\lambda}, \kappa)$. Since $\bigcap_{\lambda}(\Omega_{\lambda}, \kappa)$ is S- ω -open, then $\bigcap_{\lambda}(\Omega_{\lambda}, \kappa)$ is a $Sg(\beta, \omega) - C$ set.

Remark 3.1. The S-union of two $Sg(\beta,\omega) - C$ sets
ay not be a $Sg(\beta,\omega) - C$ set. This is clear from the may not be a $S_g(\beta,\omega) - C$ set. This is clear from the following example following example.

Example 3.5. Continue to Example 3.1, we have that Ω_5, Ω_{16} are $S(\beta, \omega) - C$ sets but $\Omega_5 \cup \Omega_{16} = O(\beta \log \omega) - C$ $\Omega_6 \notin Sg(\beta,\omega) - C.$
Remark 32 Th

Remark 3.2. The concept of S-generalized (β,ω) closed set and S - β -closed sets are independent. This is clear from the following example.

Example 3.6. Continue to Example 3.1, we have that Ω_8 is S- β - closed set but not generalized (β, β) ω -closed set.

Example 3.7. Continue to Example 3.1, let $\tau = {\Omega_1}$, Ω_2, Ω_5 . Then, we have that $\tau^c = {\Omega_1, \Omega_2, \Omega_4} {\Omega_5, \Omega_6}$, Ω ₇} are S-generalized (β , ω)-closed set but int S- β closed set.

Remark 3.3. The concept of S-generalized β -closed set and S-closed sets are independent. This is clear from the following Example.

Example 3.8. Continue to Example 3.1, we have that Ω_8 is a S-pre closed set but its not S-generalized (β,ω) -closed set.

Example 3.9. Continue to Example 3.1, we have get $\Omega_5, \Omega_6, \Omega_7$ are S-generalized (β, ω) -closed set nut not S-pre closed set.

Remark 3.4. The concept of S-g-closed sets and generalized (β,ω) -closed sets are independent. This is clear from the following Example.

Example 3.10. Continue to Example 3.1, we have that $\Omega_4, \Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{14}, \Omega_{15}, \Omega_{16}$ are generalized (β, ω) -closed sets but not generalized closed sets.

The same example above, say that Ω_{12}, Ω_{16} are Sgeneralized closed sets but not S-generalized $(\beta,$ ω -closed set.

Remark 3.5. The concept of S-generalized (β, β) ω -closed set and S- ω -closed set are independent this is clear form the following Example.

Example 3.11. Continue to Example 3.1, we have that $\Omega_5, \Omega_{10}, \Omega_{11}, \Omega_{14}, \Omega_{16}$ are S-generalized (β , ω)-closed set but not S- ω -closed set.

Example 3.12. Continue to Example 3.1, let $\tau =$ $\{\Omega_1,\Omega_2\}, \tau^c = \{\Omega_1,\Omega_2\}$ we have that, $\{\Omega_3,\Omega_4,\Omega_{16}\}\$ are S- ω -closed set but not S-generalized (β , ω -closed set.

Remark 3.6. The concept of S-generalized $(\beta,$ ω)-closed set and S-α-generalized closed set are independent is clear form the following Example.

Example 3.13. Continue to Example 3.1, we have that $\Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{14}, \Omega_{16}$ are S-generalized (β,ω) -closed set but not S- α -generalized closed set.

Example 3.14. Continue to Example 3.1, we have that $(\Omega_3, ..., \Omega_{16})$ are S- α -generalized closed sets but S-generalized (β,ω) -closed sets.

Remark 3.7. The concept of S-generalized (β, β) ω)-closed set and S-generalized semi-closed set are independent.

Example 3.15. Continue to Example 3.1, we have that Ω_{10} , Ω_{11} , Ω_{14} , Ω_{16} are generalized (β, ω) -closed set but not S-generalized semi-closed set.

Example 3.16. Continue to Example 3.1, let $\{\tau = \{\Omega_1, \Omega_2, \Omega_{10}, \Omega_{16}\}.$ We have that $\{\Omega_1, \Omega_2, \Omega_{10}, \Omega_{16}\}.$ We have that $\Omega_2, \Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9, \Omega_{10}, \Omega_{10}, \Omega_{11}$ $\{\Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9, \Omega_{10}, \Omega_{11}, \Omega_{12}, \Omega_{13}, \Omega_{14}\}$ are
generalized S-semi-closed but not S-generalized (8) generlaized S-semi-closed but not S-generalized $(\beta,$ ω -closed

4. Soft generalized (β,ω) -continuous map

Definition 4.1. A map $\mathfrak{V}: (\Re, \tau, \kappa)$ (V, τ', κ') is called
S-generalized (β, ω) -continuous map if $\delta \mathfrak{V}^{-1}(\mathcal{O}', \kappa')$ a S-generalized (β, ω) -continuous map if $\mathfrak{O}^{-1}(\Omega', \kappa')$
is S-generalized (β, ω) -open set in $(\Re \tau, \kappa)$ for ever is S-generalized (β,ω) -open set in (\Re, τ, κ) , for every S-open set (Ω', κ') in (V, τ', κ') .
Fyample 4.1 I et 5: $(\Re \tau, \kappa')$

Example 4.1. Let \overline{U} : (\Re, τ, κ) (V, τ', κ') be a map,
bere $(\Re \tau, \kappa)$ is a S-topological space defined in where (\Re, τ, κ) is a S-topological space defined in Example 3.1 and Let $V = \{a, b\}$, $\kappa' = \{\hbar'_1, \hbar'_2\}$ and $(V \preceq' \kappa') = \{V \notin \Omega' \mid \Omega' \}$ for $\kappa' = \{\text{inj } \}$ for that $(V, \tau', \kappa') = \{V, \phi, \Omega'_1, \Omega'_2, \Omega'_3, \Omega'_4, \Omega'_5, \Omega'_7, \Omega'_8\}$ $(V, \tau', \kappa') = \{V, \phi, \Omega'_1, \Omega'_2, \Omega'_3\}$ such that
 $\Omega'_1 = \{(\hbar'_1, \{a\}), (\hbar'_2, \{a\})\}, \Omega'_2 = \{(\hbar'_1, V), (\hbar'_2, \{a\})\}$

and $O' = J(\hbar' J a)$ ($\hbar' V$). Then is a S-generalized and $\Omega'_3 = \{(\hbar'_1, \{a\}), (\hbar'_2, V)$. Then \mho is a S-generalized (β, ω) -continuous man (β,ω) -continuous map.

Theorem 4.1. The identity map $I : (\Re, \tau, \kappa) \rightarrow (\Re, \tau, \kappa)$ is a S-generalized (β,ω) -continuous map.

Proof. It is obvious.

Theorem 4.2. Let Ö: (\Re, τ, κ) (V, τ', κ') be a S-map.
Jen Then,

- (1) If σ is S-continuous, then σ is S-generalized (β, β) ω -continuous
- (2) If σ is S- α -continuous, then σ is S-generalized β , ω -continuous
- (3) If σ is S-semi-continuous, then σ is S-generalized (β,ω) -continuous

Proof. It is obvious.

Conflicts of interest

The authors approve that no conflict of interest.

References

- [1] Molodtsov D. Soft Theory first results. Comput Math Appl 1999:37:19-31.
- [2] Shabir M, Naz M. On soft topological spaces. Comput Math Appl 2011;61:1786-99.
- [3] Kannan K. Soft generalized closed sets in soft topological spaces. J Theor Appl Inf Technol 2012;37:17-20.
- [4] Nasef AA, Parimale M, Jeevith R, EL-Sayed MK. Soft ideal theory and applications. Int J Nonlinear Anal Appl 2022;13: $1 - 10$.
- [5] Nasef AA, Azam AA. a- Completely regular and almost a- Completely regular spaces. Math Probl Eng $2022;467466:1-6$.
- [6] Alzagrani S, Nasef AA, Youns N, EL-Maghrabi AI, Badr MS. Soft toplogical approaches via soft γ−open sets. AIHS Math
2022·7·12144–53 2022;7:12144-53.
- [7] Maji PK, Biwas R, Roy R. Soft set theory. Comput Math Appl 2003;45:555-62.
- [8] Cagman N, Karats S, Enginoglu S. Soft topology. Comput Math Appl 2011;62:351-8.
- [9] Chen B. Soft semi-open sets and related properties in soft topological spaces. Appl Inf Sci 2013;7:287-94.
- [10] Arokia Rani I, Talbinaa T. A soft generalized pre closed sets and space. Proc IGMSCA 2014:138-87.
- [11] Arokia Rani I, Lancy AA. Soft gß closed sets and soft gsß closed sets in soft topological spaces. Int J Math Arch 2013;4: $17 - 23.$
- [12] Nadhini T, Kalaiselvi A. Soft ^g closed sets in topological spaces. Int J Innov Sci Eng Technol 2014;3:14595-600.
- [13] Guzel ZE, Yskel S, Tozlu N. On soft generalized preregular closed and open sets in soft topological spaces. Appl Math Sci 2014;8:7875-84.
- [14] Veerakumar MKRS. On Soft \hat{g} closed sets and \hat{g} LC functions. Indian J Math 2001;43:231-47.
- [15] Kharaland A, Ahmed B. Mapping on soft classes. New Math Comput 2017;3:471-81.