2023
Section: Mathematics and Statistics

Soft Topological Notions Via Molodtsov Model

A.A. Nasef
Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh (33516), Egypt.

A.I. Aggour
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

A. Fathy
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

S.M. Darwesh
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

Follow this and additional works at: https://absb.researchcommons.org/journal

How to Cite This Article

DOI: https://doi.org/10.58675/2636-3305.1648

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh_Mekheimer@azhar.edu.eg.
Soft Topological Notions via Molodtsov Model

Arafa Abdel-zaher Nasefa, Atef Ibrahim Aggour, Ahmed Fathy, Saad Mohamed Darwesh

Abstract

In the present paper, we introduce a new concept of soft sets called soft $g(\beta, \omega)$-closed sets. Also, we study the basic properties of this new concept and we investigate the relation between soft $g(\beta, \omega)$-closed sets and some of the other soft sets. Finally, we introduce the concept of soft $g(\beta, \omega)$-continuous map and we study the relationship between the new concept and some of the other types of soft continuity.

2010 Mathematics Subject Classification: 54B05, 54C08, 54D05
Keywords: Soft $g(\beta, \omega)$ closed set, Soft $g(\beta, \omega)$-continuous map, Soft set

1. Introduction

Molodtsov [1] introduced the soft set in 1999. The soft sets were employed in application by Maji et al. Furthermore, soft information is a particular information class. Shabir and Naz explored some more fundamental features and introduced the soft topological space in [2]. Following that, some topological research discovered several fresh varieties of near soft open sets and investigated both their individual and interrelated characteristics. K. Kannan first discussed the idea of a soft generalised closed set in [3]. Many different soft generalised closed set types were then defined by various topologists. In this article, we introduced a brand-new class of soft generalised sets termed soft (β, ω)-closed and described its fundamental characteristics. Recent years have seen a significant growth in the number of articles regarding soft sets and their applications in numerous disciplines, as demonstrated in [4–6].

2. Preliminaries

In this section, we present the basic definition and some results of soft set theory. Let \mathcal{R} be a universal set and κ be the set of parameters, $P(\mathcal{R})$ is the power set of \mathcal{R}; $A \subseteq \kappa$ and the soft set will be denoted by S-set.

Definition 2.1 [1]. A S-set (Ω, A) on \mathcal{R} is defined by the set of ordered pairs $(\Omega, A) = \{ (h, \Omega_A(h)) : h \in \kappa, \Omega_A(h) \in P(V) \}$, where $\Omega_A : A \rightarrow P(\mathcal{R})$.

Definition 2.2 [1,7]. A S-set (Ω, A) is called null S-set if for all, $h \in A$, then $\Omega(h) = \phi$ and its denoted by ϕ. A S-set (Ω, A) is called absolute S-set if for all $a \in A, \Omega(h) = R$ and its denoted by \mathcal{R}.

Definition 2.3 [1,7]. Let (Ω, A) and (Ψ, β) be two S-sets over \mathcal{R}. Then, the union of (Ω, A) and (Ψ, β) is a S-set (H, C) where $C = (A \cup \beta)$ and $H(h) = \Omega(h)$ if $h \in A - \beta$, $H(h) = \Psi(h)$ if $h \in \beta - A$, $H(h) = \Omega(h) \cup \Psi(h)$ if $h \in A \cap \beta$.

Definition 2.4 [1,7]. Let (Ω, A) and (Ψ, β) be two S-sets over \mathcal{R}. The intersection of (Ω, A) and (Ψ, β) is a S-set (F, D) where $D = A \cap \beta$, $F(h) = \Omega(h) \cap \Psi(h)$, for all $h \in D$.

Definition 2.5 [1,7]. A S-set (Ω, A) is called a S-subset of (Ψ, β) if $A \subseteq \beta$ and $(\Omega(h) \subseteq \Psi(h)$ for all $a \in A$. We write $(\Omega, A) \subseteq (\Psi, \beta)$.

Definition 2.6 [1,7]. Let $(\Omega, \kappa), (\Psi, \kappa)$ be two S-sets over \mathcal{R}. Then, the difference of $(\Omega, \kappa), (\Psi, \kappa)$ is denoted by $(H, C) = (\Omega, \kappa) \setminus (\Psi, \kappa)$ such that $H(C) = \Omega(h) \setminus \Psi(h)$ for all h in A.

Definition 2.7 [1,7]. The relative complement of (Ω, A) is denoted by $(\Omega, A)^c = (\Omega, A)$ where $\Omega^c : A \rightarrow P(\mathcal{R})$, such that $\Omega^c(h) = R \setminus \Omega(h)$ for all h in A.

Received 18 June 2023; revised 25 July 2023; accepted 27 July 2023.
Available online 13 October 2023

* Corresponding author.
E-mail address: ahmedfathy@azhar.edu.eg (A.A.-z. Nasef).
Definition 2.8 [2,8]. Let τ be a collection of S-sets over ℳ. Then, τ is called a S-topology on ℳ if the following axioms are satisfied:

1. \(\emptyset, \mathcal{M} \in \tau \).
2. The union of arbitrary S-sets in \(\tau \) belongs to \(\tau \).
3. The intersection of two S-sets in \(\tau \) belongs to \(\tau \).

The triple \((\mathcal{M}, \tau, k) \) is called a S-topological space and the members of \(\tau \) are called S-open sets and its complement are called S-closed sets.

Definition 2.9. [2,8] The S-interior of \((\Omega, k) \) is the union of all S-open sets of topological space \((\mathcal{M}, \tau, k) \) contained in \((\Omega, k) \) and its denoted by int(\(\Omega, k \)).

Definition 2.10. [2,8] The S-closure of \((\Omega, k) \) is the intersection of all S-closed sets containing and its denoted by cl(\(\Omega, k \)).

Definition 2.11. [6,9–11] Let \((\mathcal{M}, \tau, k) \) be a S-topological space. Then, \((\Omega, k) \) is said to be:

1. A S-α-open set if \((\Omega, k) \subseteq \text{int}(\text{cl}(\text{int}(\Omega, k))) \).
2. A S-semi-open set if \((\Omega, k) \subseteq \text{cl}(\text{int}(\Omega, k)) \).
3. A S-pre open set if \((\Omega, k) \subseteq \text{cl}(\text{int}(\Omega, k)) \).
4. A S-b-open set if \((\Omega, k) \subseteq \text{cl}(\text{cl}(\text{int}(\Omega, k))) \).
5. A S-β-open set if \((\Omega, k) \subseteq \text{cl}(\text{cl}(\text{int}(\Omega, k))) \).

The family of all S-α-open (resp. S-semi-open, S-pre open, S b-open and S-β-open) sets in a S-topological space \((\mathcal{M}, \tau, k) \), is denoted by SaO (resp. SSO, SPO, SbO and SSO).

Definition 2.12. [6,9–11] A set \((\Omega, k) \) of a S-topological space \((\mathcal{M}, \tau, k) \) is called S-α-closed (resp. S-semi-closed, S-pre closed, S b-closed and S-β-closed) sets if its complements is S-α-open (resp. S-semi-open, S-pre open, S b-open and S-β-open) sets.

Definition 2.13. [6,9–11] Let \((\mathcal{M}, \tau, k) \) be a S-topological space and \((\Omega, k) \) be a S-set. Then, the intersection of all S-α-closed (resp. S-semi-closed, S-pre closed, S b-closed and S-β-closed) sets containing \((\Omega, k) \) is called S-α-closure (resp. S-semi-closure, S-pre closure, S b-closure and S-β-closure) of \((\Omega, k) \) and its denoted by S\text{cl}(\(\Omega, k \)) (resp. S\text{sc}(\(\Omega, k \)), S\text{pre}(\(\Omega, k \)), S\text{bcl}(\(\Omega, k \)), S\text{bcl}(\(\Omega, k \)).

(1) S\text{cl}(\(\Omega, k \)) and S\text{sc}(\(\Omega, k \)).
(2) The union of all S-α-open (resp. S-semi-open, S-pre open, S b-open and S-β-open) sets containing in \((\Omega, k) \) is called S-α-interior (resp. S-semi-interior, S-pre interior, S b-interior and S-β-interior) of \((\Omega, k) \) and it is denoted by S\text{int}(\(\Omega, k \)) (resp. S\text{semi}(\(\Omega, k \)), S\text{pre}(\(\Omega, k \)), S\text{b}(\(\Omega, k \)), S\text{bint}(\(\Omega, k \))).

Definition 2.14. [12–14] A S-subset \((\Omega, k) \) of a S-topological space \((\mathcal{M}, \tau, k) \) is called:

1. A S-generalized closed set (sg-closed) if \((\Omega, k) \subseteq (\Psi, k) \) and \((\Psi, k) \) is S-open implies that \(\text{cl}(\Omega, k) \subseteq (\Psi, k) \).
2. A S-semi-generalized closed set (SSg-closed set) if \((\Omega, k) \subseteq (\Psi, k) \) and \((\Psi, k) \) is S-semi-open implies that \(\text{Scl}(\Omega, k) \subseteq (\Psi, k) \).
3. A generalized S-semi-closed set (SGs-closed set) if \((\Omega, k) \subseteq (\Psi, k) \) and \((\Psi, k) \) is S-open implies that \(\text{Scl}(\Omega, k) \subseteq (\Psi, k) \).
4. A S-α-generalized closed set (Sα g-closed) if \((\Omega, k) \subseteq (\Psi, k) \) and \((\Psi, k) \) is S-α-open implies that \(\text{Scl}(\Omega, k) \subseteq (\Psi, k) \).
5. A S-generalized α-closed set (SG α-closed set) if \((\Omega, k) \subseteq (\Psi, k) \) and \((\Psi, k) \) is S-open implies that \(\text{Sacl}(\Omega, k) \subseteq (\Psi, k) \).
6. A S-α-closed set (Sα c-closed set) if \((\Omega, k) \subseteq (\Psi, k) \) and \((\Psi, k) \) is S-semi-open implies that \(\text{Sacl}(\Omega, k) \subseteq (\Psi, k) \).
7. A S-generalized pre closed set (SGp-closed set) if \((\Omega, k) \subseteq (\Psi, k) \) and \((\Psi, k) \) is S-open set implies that \(\text{Spcl}(\Omega, k) \subseteq (\Psi, k) \).

Definition 2.15. [15] A map \(\Phi : (\mathcal{M}, \tau, k) \) (\(V, \tau', k' \)) is called:

(i) A S-continuous map if \(\Phi^{-1}(\Omega, k') \) is a S-open set in \((\mathcal{M}, \tau, k) \), for every S-open set \((\Omega, k') \) in \((\mathcal{V}, \tau', k') \).
(ii) A S-α- continuous map if \(\Phi^{-1}(\Omega, k') \) is a S-α-open set in \((\mathcal{M}, \tau, k) \), for every S-open set \((\Omega, k') \) in \((\mathcal{V}, \tau', k') \).
(iii) A S-α-closed map if \(\Phi^{-1}(\Omega, k') \) is an S-α-closed set in \((\mathcal{M}, \tau, k) \), for every S-open set \((\Omega, k') \) in \((\mathcal{V}, \tau', k') \).

3. A Soft generalized \((\beta, \omega)\)-closed set

Definition 3.1. Let \((\mathcal{M}, \tau, k) \) be a S-topological space. If \((\Omega, k) \subseteq (\mathcal{M}, \tau, k) \) and \((\Psi, k) \) is S-ω-open set implies that \(\text{bl}(\Omega, k) \subseteq \text{int}(\Psi, k) \), then \((\Omega, k) \) is called a S-generalized \(g(\beta, \omega) \) closed set. The set of all S-generalized \(g(\beta, \omega) \) closed sets is denoted by \(Sg(\beta, \omega) \).

In this paper, we consider \(\mathcal{M} = \{\mathcal{M}_1, \mathcal{M}_2\} \) and \(\{h_1, h_2\}, (\Omega, k) = \mathcal{M} = \{h_1, \mathcal{M}_2\} \), \((\Omega_2, k) = \phi \), \((\Omega_4, k) = \{h_1, \mathcal{M}_2\} \), \((\Omega_8, k) = \{h_1, \mathcal{M}_2\} \), \((\Omega_5, k) = \{h_1, \mathcal{M}_2\} \), \((\Omega_6, \phi) = \{h_1, \mathcal{M}_2\} \), \((\Omega_7, k) = \{h_1, \mathcal{M}_2\} \), \((\Omega_9, k) = \{h_1, \mathcal{M}_2\} \), \((\Omega_{10}, k) = \{h_1, \mathcal{M}_2\} \).
Definition 3.1. A set \((\Omega, k) \) is \(S \)-open if and only if for \((\Psi, k) \subseteq \Omega \), \(\text{int}(\Omega, k) \subseteq (\Psi, k) \). Hence, \((\Psi, k) \) is \(S \)-semi-open and so \(\text{int}(\text{cl}(\Psi, k)) \subseteq (\Psi, k) \).

Example 3.2. Let \(\Omega = (\mathbb{R}, \mathbb{R}) \), then \(\mathbb{R}^2 = (\mathbb{R}, \mathbb{R}) \).

Proposition 3.1. Every \(S \)-semi-open set is \(S \)-closed set.

Example 3.3. Let \(\tau = \{ (\mathbb{R}, \mathbb{R}), \mathbb{R}, \mathbb{R}, \mathbb{R} \} \). Then, \(\mathbb{R}^2 = (\mathbb{R}, \mathbb{R}) \).

Proposition 3.2. Every \(S \)-semi-closed set is \(S \)-open set.

Example 3.4. Let \((\mathbb{R}, k) \) be \(S \)-open set.

Proposition 3.3. Arbitrary intersection of \(S \)-open sets is also \(S \)-open set.

Example 3.5. Continue to Example 3.1, we have that \(\Omega_2 \Omega_6 \Omega_16 \) are \(S \)-\(\omega \)-closed sets.

Example 3.6. Continue to Example 3.1, we have that \(\Omega_2 \mathbb{R}_7 \mathbb{R}_16 \mathbb{R}_11 \mathbb{R}_13 \mathbb{R}_14 \mathbb{R}_16 \) are \(S \)-\(\omega \)-closed sets but not \(S \)-\(\omega \)-closed sets.

Example 3.7. Continue to Example 3.1, let \(\tau = \{ \Omega_1, \Omega_2, \Omega_6 \} \). Then, we have that \(\mathbb{R}^2 = (\mathbb{R}, \mathbb{R}) \).

Example 3.8. Continue to Example 3.1, we have that \((\mathbb{R}, k) \) is \(S \)-\(\omega \)-closed set and \(\text{int}(\Omega, k) \subseteq (\Psi, k) \).

Example 3.9. Continue to Example 3.1, we have that \(\Omega_2 \mathbb{R}_7 \mathbb{R}_16 \mathbb{R}_11 \mathbb{R}_13 \mathbb{R}_14 \mathbb{R}_16 \) are \(S \)-\(\omega \)-generalized \((\beta, \omega) \)-closed sets and \(\text{int}(\Omega, k) \subseteq (\Psi, k) \).

Example 3.10. Continue to Example 3.1, we have that \(\Omega_2 \mathbb{R}_7 \mathbb{R}_16 \mathbb{R}_11 \mathbb{R}_13 \mathbb{R}_14 \mathbb{R}_16 \mathbb{R}_19 \mathbb{R}_11 \mathbb{R}_13 \mathbb{R}_14 \mathbb{R}_15 \mathbb{R}_16 \) are \(S \)-\(\omega \)-generalized \((\beta, \omega) \)-closed sets but not \(S \)-\(\omega \)-generalized \((\beta, \omega) \)-closed sets.

Example 3.11. Continue to Example 3.1, we have that \(\Omega_2 \mathbb{R}_7 \mathbb{R}_16 \mathbb{R}_11 \mathbb{R}_13 \mathbb{R}_14 \mathbb{R}_16 \mathbb{R}_19 \mathbb{R}_11 \mathbb{R}_13 \mathbb{R}_14 \mathbb{R}_15 \mathbb{R}_16 \) are \(S \)-\(\omega \)-generalized \((\beta, \omega) \)-closed sets but not \(S \)-\(\omega \)-generalized \((\beta, \omega) \)-closed sets.
Remark 3.5. The concept of S-generalized (β, ω)-closed set and S-ω-closed set are independent this is clear from the following Example.

Example 3.11. Continue to Example 3.1, we have that $\Omega_5, \Omega_{10}, \Omega_{11}, \Omega_{14}, \Omega_{16}$ are S-generalized (β, ω)-closed set but not S-ω-closed set.

Example 3.12. Continue to Example 3.1, let $\tau = \{\Omega_1, \Omega_2\}, \tau' = \{\Omega_1, \Omega_2\}$ we have that, $\{\Omega_3, \Omega_4, \Omega_{16}\}$ are S-ω-closed set but not S-generalized (β, ω)-closed set.

Remark 3.6. The concept of S-generalized (β, ω)-closed set and S-α-generalized closed set are independent is clear form the following Example.

Example 3.13. Continue to Example 3.1, we have that $\Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{14}, \Omega_{16}$ are S-generalized (β, ω)-closed set but not S-α-generalized closed set.

Example 3.14. Continue to Example 3.1, we have that $\{\Omega_3, \ldots, \Omega_{16}\}$ are S-α-generalized closed sets but S-generalized (β, ω)-closed sets.

Remark 3.7. The concept of S-generalized (β, ω)-closed set and S-generalized semi-closed set are independent.

Example 3.15. Continue to Example 3.1, we have that $\Omega_5, \Omega_{10}, \Omega_{11}, \Omega_{14}, \Omega_{16}$ are generalized (β, ω)-closed set but not S-generalized semi-closed set.

Example 3.16. Continue to Example 3.1, let $\{\tau = \{\Omega_1, \Omega_2, \Omega_{10}, \Omega_{16}\}\}$. We have that $\{\Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9, \Omega_{10}, \Omega_{11}, \Omega_{12}, \Omega_{13}, \Omega_{14}\}$ are generalized S-semi-closed but not S-generalized (β, ω)-closed.

4. Soft generalized (β, ω)-continuous map

Definition 4.1. A map $U : (\mathcal{R}, \tau, \kappa) (V, \tau', \kappa')$ is called a S-generalized (β, ω)-continuous map if $U^{-1}(\Omega', \kappa')$ is S-generalized (β, ω)-open set in $(\mathcal{R}, \tau, \kappa)$ for every S-open set (Ω', κ') in (V, τ', κ').

Example 4.1. Let $U : (\mathcal{R}, \tau, \kappa) (V, \tau', \kappa')$ be a map, where $(\mathcal{R}, \tau, \kappa)$ is a topological space defined in Example 3.1 and Let $V = \{a, b\}, \kappa' = \{b_1, b_2\}$, and $(V, \tau', \kappa') = \{a, b, \Omega_1', \Omega_2', \Omega_3\}$ such that $\Omega_1' = \{b_1, \{a\}\}, b_2, \{a\}\}, \Omega_2' = \{b_1, V\}, b_2, \{a\}\}$ and $\Omega_3' = \{b_1, \{a\}\}, b_2, V\}$. Then U is a S-generalized (β, ω)-continuous map.

Theorem 4.1. The identity map $I : (\mathcal{R}, \tau, \kappa) \rightarrow (\mathcal{R}, \tau, \kappa)$ is a S-generalized (β, ω)-continuous map.

Proof. It is obvious.

Theorem 4.2. Let $U : (\mathcal{R}, \tau, \kappa) (V, \tau', \kappa')$ be a S-map. Then,

(1) If U is S-continuous, then U is S-generalized (β, ω)-continuous.

(2) If U is S-α-continuous, then U is S-generalized (β, ω)-continuous.

(3) If U is S-semi-continuous, then U is S-generalized (β, ω)-continuous.

Proof. It is obvious.

Conflicts of interest

The authors approve that no conflict of interest.

References