Al-Azhar Bulletin of Science

Volume 34 | Issue 2

Article 8

2023

Section: Mathematics and Statistics

Soft Topological Notions Via Molodtsov Model

A.A. Nasef

Department of Physics and Engineering Mathematics, Faculty of Engineering , Kafrelsheikh University, Kafrelsheikh (33516), Egypt.

A.I. Aggour

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

A. Fathy

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt., ahmedfathy@azhar.edu.eg

S.M. Darwesh Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

Follow this and additional works at: https://absb.researchcommons.org/journal

How to Cite This Article

Nasef, A.A.; Aggour, A.I.; Fathy, A.; and Darwesh, S.M. (2023) "Soft Topological Notions Via Molodtsov Model," *Al-Azhar Bulletin of Science*: Vol. 34: Iss. 2, Article 8. DOI: https://doi.org/10.58675/2636-3305.1648

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh_Mekheimer@azhar.edu.eg.

original article Soft Topological Notions via Molodtsov Model

Arafa Abdel-zaher Nasef^a,*, Atef Ibrahim Aggour^b, Ahmed Fathy^b, Saad Mohamed Darwesh^b

^a Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt ^b Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Abstract

In the present paper, we introduce a new concept of soft sets called soft $g(\beta, \omega)$ -closed sets. Also, we study the basic properties of this new concept and we investigate the relation between soft $g(\beta, \omega)$ -closed sets and some of the other soft sets. Finally, we introduce the concept of soft $g(\beta, \omega)$ -continuous map and we study the relationship between the new concept and some of the other types of soft continuity.

2010 Mathematics Subject Classification: 54B05, 54C08, 54D05

Keywords: Soft $g(\beta, \omega)$ closed set, Soft $g(\beta, \omega)$ -continuous map, Soft set

1. Introduction

 ${f M}$ olodtsov [1] introduced the soft set in 1999. The soft sets were employed in application by Maji et al. Furthermore, soft information is a particular information class. Shabir and Naz explored some more fundamental features and introduced the soft topological space in [2]. Following that, some topological research discovered several fresh varieties of near soft open sets and investigated both their individual and interrelated characteristics. K. Kannan first discussed the idea of a soft generalised closed set in [3]. Many different soft generalised closed set types were then defined by various topologists. In this article, we introduced a brand-new class of soft generalised sets termed soft (β, ω) -closed and described its fundamental characteristics. Recent years have seen a significant growth in the number of articles regarding soft sets and their applications in numerous disciplines, as demonstrated in [4-6].

2. Preliminaries

In this section, we present the basic definition and some results of soft set theory. Let \Re be a universal set and κ be the set of parameters, $P(\Re)$ is the power set of $\Re, A \subseteq \kappa$ and the soft set will be denoted by S-set.

Received 18 June 2023; revised 25 July 2023; accepted 27 July 2023. Available online 13 October 2023 **Definition 2.1** [1]. A S-set (Ω, A) on \Re is defined by the set of ordered pairs $(\Omega, A) = \{(\hbar, \Omega_A(\hbar)) : \hbar \in \kappa, \Omega_A(\hbar) \in P(V)\},$ where $\Omega_A : A \to P(\Re).$

Definition 2.2 [1,7]. A S-set (Ω, A) is called null Sset if for all, $\hbar \in A$, then $\Omega(\hbar) = \varphi$ and its denoted by $\tilde{\phi}$. A S-set (Ω, A) is called absolute S-set if for all $a \in A$, $\Omega(\hbar) = \Re$ and its denoted by $\tilde{\Re}$.

Definition 2.3 [1,7]. Let (Ω, A) and (Ψ, β) be two Ssets over \mathfrak{R} . Then, the union of (Ω, A) and (Ψ, β) is a S-set (H, C) where $C = (A \cup \beta)$ and

$$\begin{split} H(\hbar) &= \Omega(\hbar) \quad \text{if} \quad \hbar \in A - \beta, H(\hbar) = \Psi(\hbar) \quad \text{if} \\ \hbar \in \beta - A, H(\hbar) &= \Omega(\hbar) \cup \Psi(\hbar) \text{ if } \hbar \in A \cap \beta. \end{split}$$

Definition 2.4. [1,7] Let (Ω, A) and (Ψ, β) be two Ssets over \mathfrak{N} . The intersection of (Ω, A) and (Ψ, β) is a S-set (F, D) where $D = A \cap \beta, F(\hbar) = \Omega(\hbar) \cap \Psi(\hbar)$, for all $\hbar \in D$.

Definition 2.5. [1,7] A S-set (Ω, A) is called a Ssubset of (Ψ, β) if $A \subseteq \beta$ and $\Omega(\hbar) \subseteq \Psi(\hbar)$ for all $a \in A$. We write $(\Omega, A) \subseteq (\Psi, \beta)$.

Definition 2.6 [1,7]. Let $(\Omega, \kappa), (\Psi, \kappa)$ be two S-sets over \mathfrak{R} . Then, the difference of $(\Omega, \kappa), (\Psi, \kappa)$ is denoted by $(H, C) = (\Omega, \kappa) \setminus (\Psi, \kappa)$ such that H(C) = $\Omega(\mathfrak{h}) \setminus \Psi(\mathfrak{h})$ for all \mathfrak{h} in A.

Definition 2.7. [1,7] The relative complement of (Ω, A) is denoted by $(\Omega, A)^c = (\Omega^c, A)$ where $\Omega^c : A \rightarrow P(\Re)$ given by $\Omega^c(\hbar) = \Re \setminus \Omega(\hbar)$ for all \hbar in A.

* Corresponding author. E-mail address: ahmedfathy@azhar.edu.eg (A.A.-z. Nasef).

https://doi.org/10.21608/2636-3305.1648

^{2636-3305/© 2023,} The Authors. Published by Al-Azhar university, Faculty of science. This is an open access article under the CC BY-NC-ND 4.0 Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Definition 2.8 [2,8]. Let τ be a collection of S-sets over \Re . Then, τ is called a S-topology on \Re if the following axioms are satisfied:

(1) $\tilde{\varphi}, \tilde{\Re} \in \tau$.

(2) The union of arbitrary S-sets in τ belongs to τ

(3) The intersection of two S-sets in τ belongs to τ .

The triple $(\mathfrak{N}, \tau, \kappa)$ is called a S-topological space and the members of τ are called S-open sets and its complement are called S-closed sets.

Definition 2.9. [2,8] The S-interior of (Ω, κ) is the union of all S-open sets of topological space $(\mathfrak{R}, \tau, \kappa)$ contained in (Ω, κ) and its denoted by $int(\Omega, \kappa)$.

Definition 2.10. [2,8] The S-closure of (Ω, κ) is the intersection of all S-closed sets containing and its denoted by $cl(\Omega, \kappa)$.

Definition 2.11. [6,9–11] Let $(\mathfrak{N}, \tau, \kappa)$ be a S-topological space. Then, (Ω, κ) is said to be:

(1) A S- α -open set if $(\Omega, \kappa) \tilde{\subseteq} int(cl(int(\Omega, \kappa)))$.

(2) A S-semi-open set if $(\Omega, \kappa) \subseteq cl(int(\Omega, \kappa))$

(3) A S-pre open set if $(\Omega, \kappa) \tilde{\subseteq} int(cl(\Omega, \kappa))$.

(4) A S-*b*-open set if $(\Omega, \kappa) \subseteq int(cl(\Omega, \kappa)) \cup cl(int(\Omega, \kappa))$.

(5) A S- β -open set if $(\Omega, \kappa) \subseteq cl(int(cl(\Omega, \kappa)))$.

The family of all S- α -open (resp. S-semi-open, Spre open, S-*b*-open and S- β -open) sets in a S-topological space (\Re, τ, κ), is denoted by $S\alpha O$ (resp. *SSO*, *SPO*, *SbO* and *S* βO .

Definition 2.12. [6,9–11] A S-set (Ω, κ) of a S-topological space $(\mathfrak{N}, \tau, \kappa)$ is called S- α -closed (resp. Ssemi-closed, S-pre closed, S-b-closed and S- β -closed) sets if its complements is S- α -open (resp. S-semi-open, S-b-open and S- β -open) sets.

Definition 2.13. [6,9–11] Let $(\mathfrak{N}, \tau, \kappa)$ be a S-topological space and (Ω, κ) be a S-set. Then, The, intersection of all S- α -closed (resp. S-semi-closed, S-pre closed, S-*b*-closed and S- β -closed) sets containing (Ω, κ) is called S- α -closure (resp. S-semi-closure, S-pre closure, S-*b*-closure and S- β -closure) of (Ω, κ) and its denoted by $S\alpha cl(\Omega, \kappa)$ (resp. $SScl(\Omega, \kappa)$, $SPcl(\Omega, \kappa)$,

(1) $Sbcl(\Omega, \kappa)$ and $S\beta cl(\Omega, \kappa)$.

(2) The union of all S-α-open (resp. S-semi-open, S-pre open, S-b-open and S-β-open) sets containing in (Ω, κ) is called S-α-interior (resp. S-semi-interior, S-pre interior, S-b- interior and S-β-interior) of (Ω, κ) and it is denoted by Sαint(Ω, κ) (resp. SSint(Ω, κ), Spint(Ω, κ), Sbint(Ω, κ) and Sβint(Ω, κ).

Definition 2.14. [12–14] A S-subset (Ω, κ) of a S-topological space $(\mathfrak{R}, \tau, \kappa)$ is called:

- (1) A S-generalized closed set (sg-closed) if $(\Omega,\kappa)\subseteq(\Psi,\kappa)$ and (Ψ,κ) is S-open implies that $cl(\Omega,\kappa)\subseteq(\Psi,\kappa)$
- (2) A S-semi-generalized closed set (SSg-closed set) if (Ω, κ)⊆(Ψ, κ) and (Ψ, κ) is S-semi-open implies that SScl(Ω, κ)⊆(Ψ, κ)
- (3) A generalized S-semi-closed set (SgS-closed set) if (Ω, κ)⊆(Ψ, κ) and (Ψ, κ) is S-open implies that SScl(Ω, κ)⊆(Ψ, κ)
- (4) A S-α-generalized closed set (S α g-closed set) if (Ω, κ)⊆(Ψ, κ) and (Ψ, κ) is S-α-open implies that SScl(Ω, κ)⊆(Ψ, κ)
- (5) A S-generalized α -closed set (Sg α -closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-open implies that $S\alpha cl(\Omega, \kappa) \subseteq (\Psi, \kappa)$.
- (6) A S-α-closed set (S ω-closed set) if (Ω, κ)⊆(Ψ, κ) and (Ψ, κ) is S-semi-open set implies that Scl(Ω, κ)⊆(Ψ, κ).
- (7) A S-generalized pre closed set (*Sgp*-closed set) if $(\Omega, \kappa) \subseteq (\Psi, \kappa)$ and (Ψ, κ) is S-open set implies that $Spcl(\Omega, \kappa) \subseteq (\Psi, \kappa)$.

Definition 2.15. [15] A map \heartsuit : (\Re, τ, κ) (V, τ', κ') is called:

- (i) A S-continuous map if ^{∇⁻¹}(Ω', κ') is a S-open set in (ℜ, τ, κ), for every S-open set (Ω', κ') in (V, τ', κ').
- (ii) A S-α- continuous map if O⁻¹(Ω', κ') is a α-S-open set in (ℜ, τ, κ), for every S-open set (Ω', κ') in (V, τ', κ').
- (iii) A S-semi continuous map if
 ^{O⁻¹}(Ω', κ') is a S-semi-open set in (ℜ, τ, κ), for every S-open set (Ω', κ') in (V, τ', κ').

3. A Soft generalized (β, ω) -closed set

Definition 3.1. Let $(\mathfrak{N}, \tau, \kappa)$ be a S-topological space. If $(\Omega, \kappa) \subseteq (\mathfrak{N}, \kappa)$ and (\mathfrak{N}, κ) is S- ω -open set implies that $\beta cl(\Omega, \kappa) \subseteq int(\mathfrak{N}, \kappa)$, then (Ω, κ) is called a S-generalized $g(\beta, \omega)$ closed set. The set of all S-generalized $g(\beta, \omega)$ closed sets is denoted by $Sg(\beta, \omega)c$.

In this paper, we consider $\mathfrak{N} = \{\mathfrak{N}_1, \mathfrak{N}_2\}$ and $= \{\mathfrak{h}_1, \mathfrak{h}_2\}, (\Omega, \kappa) = \tilde{\mathfrak{N}} = \{(\mathfrak{h}_1, \mathfrak{N}), (\mathfrak{h}_2, \mathfrak{N})\}, (\Omega_2, \kappa) = \tilde{\phi} = \{(\mathfrak{h}_1, \phi), (\mathfrak{h}_2, \phi)\}, (\Omega_3, \kappa) = \{(\mathfrak{h}_1, \{\mathfrak{N}_1\}), (\mathfrak{h}_2, \{\mathfrak{N}_1\})\}, (\Omega_4, \kappa) = \{(\mathfrak{h}_1, \{\mathfrak{N}_2\}), (\mathfrak{h}_2, \{\mathfrak{N}_2\})\}, (\Omega_5, \kappa) = \{(\mathfrak{h}_1, \mathfrak{N}), (\mathfrak{h}_2, \phi)\}, (\phi)\},$

 $\begin{aligned} (\Omega_6, \kappa) &= \{ (\hbar_1, \Re), (\hbar_2, \Re_1) \}, (\Omega_7, \kappa) = \{ (\hbar_1, \Re), (\hbar_2, \\ \{ \Re_2 \}) \}, (\Omega_8, \kappa) &= \{ (\hbar_1, \phi), \end{aligned}$

 $\begin{array}{l} (\hbar_2,\{\Re_1\})\}, (\Omega_9,\kappa) = \{(\hbar_1,\phi), (\hbar_2,\{\Re_2\})\}, (\Omega_{10},\kappa) = \\ \{(\hbar_1,\{\Re_1\}), (\hbar_2,\{\Re_2\})\}, \end{array}$

 $(\Omega_{11},\kappa) =$

$$\begin{split} &\{(\hbar_1,\phi),(\hbar_2,\Re)\}, (\Omega_{12},\kappa) = \{(\hbar_1,\{\Re_1\}),(\hbar_2,\Re)\}, \\ &(\Omega_{13},\kappa) = \{(\hbar_1,\{\Re_2\}), \end{split}$$

 $\begin{array}{ll} (\hbar_2, \Re) \}, (\Omega_{14}, \kappa) = \{ (\hbar_1, \{ \Re_1 \}), (\hbar_2, \phi) \}, & (\Omega_{15}, \ \kappa) = \\ \{ (\hbar_1, \{ \Re_2 \}), (\hbar_2, \phi) \}, \end{array}$

 $(\Omega_{16},\kappa) = \{(\hbar_1,\{\Re_2\}), (\hbar_2,\{\Re_2\})\}$

Example 3.1. Let $\tau = \{\mathfrak{N}, \tilde{\phi}, \Omega_3, \Omega_6, \Omega_{13}\}$. Then, $\tau^c = \{\tilde{\mathfrak{N}}, \tilde{\phi}, \Omega_4, \Omega_9, \Omega_{15}\}$. We have that $g(\beta, \omega)c = \{\Omega_1, \Omega_2, \Omega_4, \Omega_5, \Omega_7, \Omega_9, \Omega_{11}, \Omega_{13}, \Omega_{15}, \Omega_{16}\}$.

Proposition 3.1. A S-set (Ω, κ) is S- ω -open if and inly if $(\Psi, \kappa) \subseteq int(\Omega, \kappa)$, whenever (Ψ, κ) is S-semiclosed and $(\Psi, \kappa) \subseteq (\Omega, \kappa)$.

Proof. Let (Ω, κ) be S- ω -open. Then (Ω^c, κ) is a S- ω -closed set. So, $cl(\Omega^c, \kappa)\tilde{\subseteq}(\Psi, \kappa)$, whenever $(\Omega^c, \kappa)\tilde{\subseteq}(\Psi_1, \kappa)$, where (Ψ_1, κ) is S-semi-open. Hence, (Ψ_1^c, κ) is S-semi-closed and so $\operatorname{int}(cl(\Psi^c, \kappa))\tilde{\subseteq}(\Psi^c, \kappa)$. If we assume that $\Psi_1^c = \Psi$, then $\operatorname{int}(cl(\Psi, \kappa))\tilde{\subseteq}(\Psi, \kappa)$. Since $cl(\psi^c, \kappa)\tilde{\subseteq}(\psi, \kappa)$, then $(\psi, \kappa)\tilde{\subseteq}\operatorname{int}(\Omega, \kappa)$. Conversely, let (Ω, κ) be a S-set such that $(\psi, \kappa)\tilde{\subseteq}(\Omega, \kappa)$. Then, $(\Omega^c, \kappa)\tilde{\subseteq}(\psi^c, \kappa)$, wherever (ψ^c, κ) is S-semi-closed and $(\psi, \kappa)\tilde{\subseteq}(\Omega, \kappa)$. Then, $(\Omega^c, \kappa)\tilde{\subseteq}(\psi^c, \kappa)$, wherever (ψ^c, κ) is S-semi-open set implied that $(\Omega^c, \kappa)\tilde{\subseteq}cl(\operatorname{int}(\psi^c, \kappa))$ then $cl(\Omega^c, \kappa)\subseteq cl(\operatorname{int}(\psi^c, \kappa))$. Since

 $[cl(int(\psi^c, \kappa))]$ is semi-open set, then (Ω^c, κ) is S- ω -closed set and so (Ω, κ) is S- ω -open.

Proposition 3.2. Every S-semi-closed set is a $Sg(\beta, \omega) - C$ set.

Proof. Let (ψ, κ) be a S-semi-closed set and $(\psi, \kappa) \underline{\tilde{\subseteq}}(\Omega, \kappa)$, where (Ω, κ) is S- ω -open set. By Proposition 3.1, we have that $(\psi, \kappa)\underline{\tilde{\subseteq}}int(\Omega, \kappa)$. Also, since (ψ, κ) is S-semi-closed, then (ψ, κ) is S- β -closed, and so

 $S\beta cl(\psi, \kappa) = (\psi, \kappa) \tilde{\subseteq} int(\Omega, \kappa)$. Hence (ψ, κ) is a $Sg(\beta, \omega) - C$ set.

We not that the converse of the proposition 3.2 may not be a true, in general as shown in Example 3.1.

Example 3.2. Continue to Example 3.1, we have that S-sets.

 $\{\Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{14}, \Omega_{16}\}$ are $S - (\beta, \omega)$ -closed sets but not S-semi-closed sets.

Proposition 3.3. Every S-closed set is a $Sg(\beta, \omega) - C$ set.

Proof. Let (ψ, κ) be a S-closed set and $(\psi, \kappa) \subseteq (\Omega, \kappa)$, where (Ω, κ) is S- ω -open. Then, by Proposition 3.1 $(\psi, \kappa) \subseteq int(\Omega, \kappa)$. Since (ψ, κ) is a S-closed set, then (ψ, κ) is a S- β -closed set and then $S\beta cl(\psi, \kappa) = (\psi, \kappa) \subseteq$ $int(\Omega, \kappa)$. Hence, (ψ, κ) is $Sg(\beta, \omega) - C$

We note that the converse of the proposition 3.3 may not be a true, in general as shown in Example 3.1.

Example 3.3. Continue to Example 3.1, we have that the S-sets.

 $\{\Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{16}\}$ are $Sg(\beta, \omega) - C$ sets but not S-closed sets.

Proposition 3.4. Every S-*α*-closed set is a $Sg(\beta, \omega) - C$ set.

Proof. Let (ψ, κ) be a S- α -closed set and $(\psi, \kappa) \subseteq (\Omega, \kappa)$, where (Ω, κ) is S–W-open. Then, by Lemma 3.1 we have that $(\psi, \kappa) \subseteq int(\Omega, \kappa)$. Since (ψ, κ) be S- α -closed, then (ψ, κ) is a S- β -closed and $S\beta cl(\psi, \kappa) = (\psi, \kappa) \subseteq int(\Omega, \kappa)$. Hence, (ψ, κ) is $Sg(\beta, \omega) - C$ set.

We note that the converse of the proposition 3.4 may not be a true, in general as shown in Example 3.1.

Example 3.4. Continue to Example 3.1, we have that the S-set Ω_5 is $Sg(\beta, \omega) - C$ set but not S- α -closed.

Proposition 3.5. Arbitrary intersection of $Sg(\beta, \omega) - C$ sets is also $Sg(\beta, \omega) - C$ set.

Proof. Let $(\Omega_{\lambda}, \kappa)$ be $Sg(\beta, \omega) - C$ sets in the S-topological space $(\mathfrak{N}, \tau, \kappa)$. Then, $S\beta cl(\Omega_{\lambda}, \kappa) \subseteq int(\mathfrak{N}_{\lambda}, \kappa)$, for each λ , whenever $(\Omega_{\lambda}, \kappa) \subseteq (\mathfrak{N}_{\lambda}, \kappa)$, are S- ω -open sets. Hence, we have that $\bigcap_{\lambda} S\beta cl(\Omega_{\lambda}, \kappa) \subseteq \bigcap_{\lambda} int(\mathfrak{N}_{\lambda}, \kappa)$, for each λ , whenever $\bigcap_{\lambda} (\Omega_{\lambda}, \kappa) \subseteq (\mathfrak{N}_{\lambda}, \kappa)$. Since $\bigcap_{\lambda} (\Omega_{\lambda}, \kappa)$ is S- ω -open, then $\bigcap_{\lambda} (\Omega_{\lambda}, \kappa)$ is a $Sg(\beta, \omega) - C$ set.

Remark 3.1. The S-union of two $Sg(\beta, \omega) - C$ sets may not be a $Sg(\beta, \omega) - C$ set. This is clear from the following example.

Example 3.5. Continue to Example 3.1, we have that Ω_5, Ω_{16} are $S(\beta, \omega) - C$ sets but $\Omega_5 \cup \Omega_{16} = \Omega_6 \notin Sg(\beta, \omega) - C$.

Remark 3.2. The concept of S-generalized (β, ω) closed set and S- β -closed sets are independent. This is clear from the following example.

Example 3.6. Continue to Example 3.1, we have that Ω_8 is S- β - closed set but not generalized (β , ω)-closed set.

Example 3.7. Continue to Example 3.1, let $\tau = \{\Omega_1, \Omega_2, \Omega_5\}$. Then, we have that $\tau^c = \{\Omega_1, \Omega_2, \Omega_4\}\{\Omega_5, \Omega_6, \Omega_7\}$ are S-generalized (β, ω) -closed set but int S- β -closed set.

Remark 3.3. The concept of S-generalized β -closed set and S-closed sets are independent. This is clear from the following Example.

Example 3.8. Continue to Example 3.1, we have that Ω_8 is a S-pre closed set but its not S-generalized (β, ω) -closed set.

Example 3.9. Continue to Example 3.1, we have get $\Omega_5, \Omega_6, \Omega_7$ are S-generalized (β, ω) -closed set nut not S-pre closed set.

Remark 3.4. The concept of S-g-closed sets and generalized (β, ω) -closed sets are independent. This is clear from the following Example.

Example 3.10. Continue to Example 3.1, we have that $\Omega_4, \Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{14}, \Omega_{15}, \Omega_{16}$ are generalized (β, ω) -closed sets but not generalized closed sets.

The same example above, say that Ω_{12} , Ω_{16} are S-generalized closed sets but not S-generalized (β , ω)-closed set.

Remark 3.5. The concept of S-generalized (β , ω)-closed set and S- ω -closed set are independent this is clear form the following Example.

Example 3.11. Continue to Example 3.1, we have that $\Omega_5, \Omega_{10}, \Omega_{11}, \Omega_{14}, \Omega_{16}$ are S-generalized (β , ω)-closed set but not S- ω -closed set.

Example 3.12. Continue to Example 3.1, let $\tau = \{\Omega_1, \Omega_2\}, \tau^c = \{\Omega_1, \Omega_2\}$ we have that, $\{\Omega_3, \Omega_4, \Omega_{16}\}$ are S- ω -closed set but not S-generalized (β , ω)-closed set.

Remark 3.6. The concept of S-generalized (β , ω)-closed set and S- α -generalized closed set are independent is clear form the following Example.

Example 3.13. Continue to Example 3.1, we have that $\Omega_5, \Omega_7, \Omega_{10}, \Omega_{11}, \Omega_{13}, \Omega_{14}, \Omega_{16}$ are S-generalized (β, ω) -closed set but not S- α -generalized closed set.

Example 3.14. Continue to Example 3.1, we have that $(\Omega_3, ..., \Omega_{16})$ are S- α -generalized closed sets but S-generalized (β, ω) -closed sets.

Remark 3.7. The concept of S-generalized (β , ω)-closed set and S-generalized semi-closed set are independent.

Example 3.15. Continue to Example 3.1, we have that $\Omega_{10}, \Omega_{11}, \Omega_{14}, \Omega_{16}$ are generalized (β, ω) -closed set but not S-generalized semi-closed set.

Example 3.16. Continue to Example 3.1, let { $\tau = \{\Omega_1, \Omega_2, \Omega_{10}, \Omega_{16}\}$. We have that $\{\Omega_3, \Omega_4, \Omega_5, \Omega_6, \Omega_7, \Omega_8, \Omega_9, \Omega_{10}, \Omega_{11}, \Omega_{12}, \Omega_{13}, \Omega_{14}\}$ are generlaized S-semi-closed but not S-generalized (β , ω)-closed

4. Soft generalized (β, ω) -continuous map

Definition 4.1. A map $\mathfrak{O}: (\mathfrak{N}, \tau, \kappa) (V, \tau', \kappa')$ is called a S-generalized (β, ω) -continuous map if $\mathfrak{O}^{-1}(\Omega', \kappa')$ is S-generalized (β, ω) -open set in $(\mathfrak{N}, \tau, \kappa)$, for every S-open set (Ω', κ') in (V, τ', κ') .

Example 4.1. Let \mathfrak{V} : $(\mathfrak{N}, \tau, \kappa)$ (V, τ', κ') be a map, where $(\mathfrak{N}, \tau, \kappa)$ is a S-topological space defined in Example 3.1 and Let $V = \{a, b\}, \kappa' = \{\mathfrak{h}'_1, \mathfrak{h}'_2\}$ and $(V, \tau', \kappa') = \{V, \phi, \Omega'_1, \Omega'_2, \Omega'_3\}$ such that $\Omega'_1 = \{(\mathfrak{h}'_1, \{a\}), (\mathfrak{h}'_2, \{a\})\}, \quad \Omega'_2 = \{(\mathfrak{h}'_1, V), \quad (\mathfrak{h}'_2, \{a\})\}$ and $\Omega'_3 = \{(\mathfrak{h}'_1, \{a\}), (\mathfrak{h}'_2, V).$ Then \mathfrak{V} is a S-generalized (β, ω) -continuous map.

Theorem 4.1. The identity map $I : (\mathfrak{N}, \tau, \kappa) \rightarrow (\mathfrak{N}, \tau, \kappa)$ is a S-generalized (β, ω) -continuous map.

Proof. It is obvious.

Theorem 4.2. Let $\mathfrak{O}: (\mathfrak{N}, \tau, \kappa) (V, \tau', \kappa')$ be a S-map. Then,

- If O is S-continuous, then O is S-generalized (β, ω)-continuous
- (2) If \Im is S- α -continuous, then \Im is S-generalized (β , ω)-continuous
- (3) If
 ^o is S-semi-continuous, then ^o is S-generalized (β, ω)-continuous

Proof. It is obvious.

Conflicts of interest

The authors approve that no conflict of interest.

References

- Molodtsov D. Soft Theory first results. Comput Math Appl 1999;37:19–31.
- [2] Shabir M, Naz M. On soft topological spaces. Comput Math Appl 2011;61:1786–99.
- [3] Kannan K. Soft generalized closed sets in soft topological spaces. J Theor Appl Inf Technol 2012;37:17–20.
- [4] Nasef AA, Parimale M, Jeevith R, EL-Sayed MK. Soft ideal theory and applications. Int J Nonlinear Anal Appl 2022;13: 1–10.
- [5] Nasef AA, Azam AA. α– Completely regular and almost α– Completely regular spaces. Math Probl Eng 2022;467466:1–6.
- [6] Alzagrani S, Nasef AA, Youns N, EL-Maghrabi AI, Badr MS. Soft toplogical approaches via soft γ-open sets. AIHS Math 2022;7:12144-53.
- [7] Maji PK, Biwas R, Roy R. Soft set theory. Comput Math Appl 2003;45:555–62.
- [8] Cagman N, Karats S, Enginoglu S. Soft topology. Comput Math Appl 2011;62:351–8.
- [9] Chen B. Soft semi-open sets and related properties in soft topological spaces. Appl Inf Sci 2013;7:287–94.
- [10] Arokia Rani Î, Talbinaa T. A soft generalized pre closed sets and space. Proc IGMSCA 2014:138–87.
- [11] Arokia Rani I, Lancy AA. Soft gβ closed sets and soft gsβ closed sets in soft topological spaces. Int J Math Arch 2013;4: 17–23.
- [12] Nadhini T, Kalaiselvi A. Soft g closed sets in topological spaces. Int J Innov Sci Eng Technol 2014;3:14595–600.
- [13] Guzel ZE, Yskel S, Tozlu N. On soft generalized preregular closed and open sets in soft topological spaces. Appl Math Sci 2014;8:7875–84.
- [14] Veerakumar MKRS. On Soft g closed sets and g LC functions. Indian J Math 2001;43:231-47.
- [15] Kharaland A, Ahmed B. Mapping on soft classes. New Math Comput 2017;3:471–81.