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ORIGINAL ARTICLE

Characterization, and Potential of Subsurface
Phosphorite Bearing Uranium at East Mahameid
Region, Egypt

Mohamed G. Mansour a, Mohamed W. Abd El-Moghny b,*, Ibrahim H. Zidan c,
Mahmoud M. Hassaan b

a Misr Phosphate Company, Sibaiya, Egypt
b Department of Geology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
c Nuclear Materials Authority, 530 Maadi, Cairo, Egypt

Abstract

The present study deals with geological, mineralogical and geochemical studies of the Upper Cretaceous Duwi For-
mation bearing phosphorites and its radioactivity at east Mahameid area, Nile Valley, Egypt. In the studied area, 100
boreholes were drilled in three sectors; Abu Sabona (A); Araby (B); and EI- Mallaha (C). The selected core samples have
been described to illustrate the stratigraphic succession of the investigated area. Thirty phosphorite samples were
studies petrographically and analyzed chemically. The chemical analyses were arried out at the Labs of Nuclear Ma-
terials Authority (NMA). The obtained data revealed the formation of the Lower Phosphorite Member as isolated
lenticular bodies. The Lower Phosphorites Member is deposited in shallower epicontenental marine environment than
the upper one. The abnormal concentration of Cr, Ni favor their ultramafic emafic source rock. The slight difference in
cU and eU with increasing in cU contents in most samples relative to eU, could be connected to recent uranium migration
from the upper black shale of the Dakhla Formation.

Keywords: Duwi, Egypt, Nile valley, Phosphorite, Uranium

1. Introduction

D ue to its economic interest, the Upper Cam-
panian, phosphate-rich, Duwi Formation has

been intensely studied. The increased interest in
these phosphorite deposits of the Duwi Formation
coincides with the discoveries of oil shale and rare
earth elements associated with the phosphate de-
posits [1]. The Duwi Formation was studied by
several authors who described their stratigraphy,
petrography, geochemistry and phosphogenesis
[2e11]. The phosphorites of the studied Duwi For-
mation are mined at three major regions on the Red
Sea coastal zone (e.g. SafagaeQusseir district), on
both banks of the Nile Valley (e.g. Sibaiya and
Mahameid), and Western Desert (e.g. Abu Tartur
plateau and Dakhla Oasis). The phosphorite

reserves in these localities are not clearly calculated.
However, the estimated geological reserves are
more than about 70 million tons at Nile Valley [12].
Upper Campanian phosphate deposits in Egypt

occur in basins that remained relatively tectonically
undeformed representing stable shelf areas [11]. In
contrast, the Duwi area, at the northwestern margin
of the Red Sea, can be considered as tilted faulted
blocks that are generally dissected by minor faults,
especially in the northern and southern parts [13]. A
major phosphogenic episode took place during the
late Campanian in the North Africa [14] that was a
part of the broad, shallow, southern epicontinental
shelf of the Tethys Ocean, situated between 10� and
20� N palaeo-latitudes [15]. The prevailing winds
were blowing to the west and southwest onto the
southern Neo-Tethys epicontinental shelf creating
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an upwelling regime from the deeper Neo-Tethys
Ocean onto this shelf [14,16]. The depositional
setting caused rapid lateral variations in thickness
and facies. The Egyptian phosphates are shallow
marine deposits. The maximum phase of phospho-
rite sedimentation was associated with a trans-
gressive shoreline of the Neo-Tethys Ocean that
encroached from north to south over the northern
margin of Africa during Coniacian to Campanian
times [17].
The aimof the present study is to present the results

of an investigation of the lithofacies, mineralogy and
geochemistry of the studied bearingCretaceous rocks
to determine their petrographical and geochemical
characteristics and its radioactivity in some subsur-
face sections, East Mahameid area, Nile Valley. The
study area is located between longitudes 32� and 32�

47′ 00 E� and latitudes 25� 9‘ and 25� 11’ N along the
right bank of the Nile Valley (Fig. 1).

2. Methods of study

In the present work, 100 boreholes have been
drilled and the lithostratigraphic sections of the
Duwi Formation, cover all the studied area (Fig. 2),
have been measured in the field and sampled.
Thirty phosphorite sample were collected and

described from the drilled boreholes. The thin sec-
tions of these phosphorite samples have been
studied using polarizing microscope to identify their
mineral constituents and petrographical textures.
Besides, 10 selected phosphatic samples have been
studied by XRD technique, using PHILIPS PW 3710/
31 diffractometer, scintillation counter; Cu-target
tube and Ni filter at 40 kV and 30 mA, to identify the
semi-quantitative distribution of the different min-
erals in these studied phosphorites.
The major oxides in the phosphatic samples have

calculated by using the conventional wet chemical
methods. SiO2, TiO2, Al2O3 and P2O5 contents are
determined using the spectrophotometric method,
Na2O and K2O contents are analyzed by the flame
photometric method, Fe2O3, MgO and CaO by
mean of EDTA complex method as volumetrically
technique and loss on ignition, (L.O.I.) by heating at
1000 �C after drying at 110 �C. The content of the
trace elements has been determined using the XRF
technique. The uranium and thorium concentra-
tions were determined by multi-channel analyzer
gamma ray spectrometer. The uranium content is
chemically determined by LABOMED spectropho-
tometric coulermetrically using Arenaso III method.
All the analyses were carried out in the laboratories
of the Egyptian Nuclear Materials Authority (NMA).

Fig. 1. Geologic map of the studied area (modified after Geological Survey of Egypt, 1981).
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3. Lithostratigraphy

Several staratigraphical studies were carried out
on the Esna e Idfu district [2,18,19] to classify the
Upper Cretaceous-Lower Eocene succession in the
Nile Valley region. In the studied area, the basal
part of this sequence is the Nubia Formation (Taref
Sandstone and Qusseir Variegated Shale),
conformably overlain by the Duwi, and Dakhla
formations. The term ‘Duwi Formation‘ was intro-
duced to describe the Upper Cretaceous phosphate
bearing rock unit at Gebel Duwi [20]. The studied
Duwi Formation is conformably overlain by the
Dakhla Formation (Fig. 3), that is made up of black
fissile shale with thin intercalated beds of silty clay.
The maximum thickness of the Dakhla Formation in
the studied area (10 m) can be measured at the
northern part relative to 1 m at the southern part.
The sections of the Duwi Formation are exposed

by open pit mining and revealed that this rock unit
is fossiliferous including some ammonites and other
molluscan faunas in addition to some shark teeth.
These faunae attributed the Duwi Formation to the
Campanian [18,21e23]. The Campanian e Maas-
trichtian is considered the age of this formation by
[13,24e30], while [13,27e29] of Lower Maastrichtian
age. However [11], studied the calcareous nano-
fossils at Gebel Duwi section introducing the Upper
Campanian age for the Duwi Formation.
In the studied area, the Duwi Formation is

composed of oxidized, yellow to brownish

phosphorite, intercalated with thin black shale,
dolomitic lenses and oyster limestone beds (Fig. 3).
This formation ranges in thickness from 1 up to 10 m
and attains its maximum thickness in the north-
western part of the studied area (site B).
In some drilled wells the rocks of the Duwi For-

mation are not recorded, where the total drilled
succession is represented only by shales of the
Dakhla Formation (Fig. 3). The deposition of the
Lower Member of the Duwi formation in the stud-
ied area probably controlled by the palegeographic
features of the basin. The isolith contour map of the
total thickness of the studied phosphorites matches
relatively with the increase of the thickness of the
Duwi Formation (Fig. 5).
The Duwi Formation in the studied area com-

prises three unformal members; lower, middle and
upper members. The Lower Member, the basal unit,
is composed of yellowish brown phosphate beds
interbedded with thin black shale bands, lenses of
dolomite, chert and oyster phosphatic limestone
(Fig. 6). The thickness of this member ranges from 6
to 7 m thick and attains a maximum thickness (7 m)
in the central part of the studied area (Fig. 3). The
isopach map of the drilled Lower Member revealed
that this member form as slightly isolated lenticular
bodies (apparently bedded) with maximum thick-
ness at troughs (Fig. 4). This phenomenon associ-
ated with synclines [30,31].
The Middle Member is composed of grey to black,

papery shale and its thickness ranges from 4 to

Fig. 2. The distribution of the drilled boreholes in the studied East Mahameid area.

54 M.G. Mansour et al. / Al-Azhar Bulletin of Science 34 (2023) 52e66



7.5 m, where its maximum thickness is measured in
the central part of the study area.
The Upper Member is the uppermost unit of

the Duwi Formation and composed of yellowish

brown phosphorites. The upper member ranges in
thickness from 15 to 30 cm and its maximum
thickness is recorded in the northern part of the
study area.

Fig. 5. Isolith map shows the distribution of the phosphorite thickness of
the Duwi Formation in east Mahamied area.

Fig. 4. Isoline map of the total thickness of the Lower Member of the
Duwi Formation in the drilled boreholes at East Mahameid area.

Fig. 3. Stratigraphic sequence with maximum thickness of the drilled boreholes in studied sectors: A) Abu Sabuna; B) Araby; and C) EL-Mallaha, at
East Mahameid area.
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4. Results and discussion

4.1. Petrographic features

Microscopically, the different components of the
studied phosphate samples can be conveniently
grouped into three principal components namely:
phosphate particles, non-phosphate particles, and
cement.

(a) Phosphate Particles. The petrographical study
identified two allochemical phosphatic particles;
peloids and bioclastic grains. The size of these
phosphatic grains of the lower phosphorite are
coarser than those in the upper phosphorites.
These particles range from very coarse (up to
2 mm) in the lower phosphorite to fine (<0.2 mm)
in the upper phosphorite samples. Also, the
quantity of the phosphatic grains in the lower
phosphorites are much higher than that of the
upper one. The lower phosphorites have a closed
packing texture while the texture of the upper
phosphorites to be described as open packing.
Optically, the phosphate minerals of the studied
phosphorites occur as a cryptocrystalline and/or
amorphous forms (collophane) that vary in color
from brownish-yellow, grey to black as shown in
Fig. 7. The variation of color from black, grey to
yellow reflects the change from reducing medium
of deposition to oxidizing medium of the diage-
netic processes [11].
(i) Peloids. They observed as structureless,
isotropic grains forming up to 55% of the phos-
phatic grains in the studied phosphorites.
Texturally, peloids possess different shapes and
sizes. Much of the studied phosphorite samples
consist of coarse grained pellets up to several
millimeters in diameter which made up of collo-
phane (Fig. 7a, b). The phosphatic pellets are

rounded grains resulting of reworking of the in
situ phosphate particles. The authigenic phos-
phatic (pristine) pellets present as isomorphic
angular to subangular, oval or irregular grains
(Fig. 7c). The roundness of the allochthonous
phosphatic pellets may be related to the deposi-
tional hydrodynamic regime that causing strong
wave activity [32]. The hydrodynamic regime was
not constant even within a single stratigraphic
level, as evidenced by a differently directed
oblique layering. The effect of unidirectional
current flow can be observed where the different
phosphatic grains are oriented along one direc-
tion. The color of the pellets varies from dark
yellow to pale yellow, but sometimes they have a
reddish-brown color associated with ferruginous
staining.
(ii) Phosphatic bioclastic grains. The studied thin
sections are represented mainly by black,
brownish-yellow to yellow teeth and bone frag-
ments which are sized from medium, coarse to
very coarse (up to 2 mm) grains (Fig. 7a, b, d).
Teeth fragments with prismatic shape have been
recorded in the studied phosphate samples in a
grey to black color that occasionally stained by
iron oxides red pigments (Fig. 7). Bone fragments
present in the studied phosphorites in different
forms and they are made up of subangular to
rounded elongated forms (Fig. 7), with grey to
black color which sometimes transformed into
brownish red as a result of iron oxide staining.
Occasionally, chalcedony replaced the apatite
minerals in some bone fragments (Fig. 7b).

The reworking of the vertebrate skeletal frag-
ments by currents can accumulate the phosphatic
bioclastic grains in near shore and intertidal zones
during marine transgression. The bioclasts can form

Fig. 6. Field photograph showing the exposed stratigraphic section of the studied area: (a) three members of the Duwi Formation that overlain by the
Dakhla Formation; (b) dolomitic lenses (D) intercalated within phosphatic beds.

56 M.G. Mansour et al. / Al-Azhar Bulletin of Science 34 (2023) 52e66



in association with phosphate related to upwelling
process. The phosphate and phosphatized lime-
stone fragments, as well as phosphatic fossils are
very resistant to weathering agents. They are easily
reworked into succeeding beds are mainly from
concentrates, again of economic value [32].

(b) Non-Phosphate Particles. The studied phospho-
rite samples are represented by bioclastic
pelecypod grains, detrital quartz, and rarely
authigenic glauconite. The size of the pelecypod
fragments reaches up to 4 mm in some phos-
phatic samples, especially that of the Lower
Phosphorite Member. The bioclastic carbonate
grains are made up of fibrous macrocrystalline

calcite, that occasionally replaced by silica.
Detrital quartz is dispersed as fine e very fine,
angular, spherical and longitudinal, sand grains
and compose <5% of the rock.

(c) Cementing Materials. The examined phospho-
rites vary from carbonates (mainly calcite)
(Fig. 7a), iron oxides, anhydrite, gypsum, to
amorphous silica which represents the main
partners of cement in the studied phosphorites.
Silica cement presents as amorphous chalced-
ony mineral (Fig. 4b). Occasionally, calcite
cement in the some studied phosphorite sam-
ples subjected to dolomitization and form
microcrystalline dolomite.

Fig. 7. Photographs showing different constitutes of the studied phosphorite: a) skeletal, prismatic teeth (T), bone fragment (B) and phosphatic pellets
imbedded in calcite cement; b) bioclastic phosphatic grains consisting of bone fragments embedded in amorphous silica cement; c) pristine larger
phosphatic pellets and some reworked pellets; d) dissoluted phosphatic grain in the central part and other dispersed phosphatic grains are stained by
iron oxides; e) fine phosphatic grains and pelecypod fragments (Pl) in the upper Phosphorite Member; f) fractured bone fragments (B) and partial
dissoluted phosphatic pellets (P) in the Upper Phosphorite Member. Bare scale ¼ 0.5 mm.
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4.2. Mineral constituents

4.2.1. Phosphate minerals
In the present study ten samples of phosphate

rocks were prepared and investigated as bulk sam-
ples to determine the mineralogical composition of
the studied phosphatic rocks. The most abundant
and widespread minerals in the studied phospho-
rites are the apatite; carbonate-flour-apatite (franco-
lite) and carbonate-hydroxyapatite (dahllite). The
dahllite has been formed by the gradual crystalliza-
tion of the collophane (amorphous or mineraloid
calcium carbonate-phosphate) and by the migration
of some of the calcium phosphate [1]. Also, the
dahllite may have formed by the gradual crystalli-
zation and replacement of the collophane as well as
carbonates (calcite, dolomite, few magnesite) [3].
According to [33] the francolite represents the main
apatite minerals in peloids, whereas the dahllite is
the substance that provides the mineral content of
organically formed bones and teeth. Generally, the
apatite lattice is an open lattice which allows a greet
number of isomorphous substitution. The XRD ob-
tained data of the studied phosphorite samples
detected the dahllite as the major phosphate mineral
(Table 1). However, francolite is also present and it
was difficult to distinguish between the two minerals
based on their diffraction lines. The X-ray diffraction
patterns of francolite and dahllite (hydroxyapatite)
are similar in their general appearance and intensity
distribution [34]. Also it is conformable with the
general phenomenon in which a natural primary
precipitate of hydroxyapatite, such as bones and
teeth, pick up fluorine and changes with time in an
open system toward fluorapatite composition [35].
The petrographical examination revealed enrich-
ment of phosphatic bioclastic grains, bone and teeth
fragments, in the studied phosphorites. The main
characteristic reflections of francolite at 2.79, 2.69,
and 1.62 Å have been detected in the pattern of all
analyzed phosphate samples. Francolite and dahllite

are the main mineral constituents of west Nile Valley
phosphorite [10].

4.2.2. Non-phosphate minerals
The non-phosphate minerals identified in the

studied phosphorites include calcite, gypsum,
quartz and dolomite (Table 1). Calcite is the major
non-phosphate mineral constituent of the most
studied phosphorite samples. As mentioned by
petrographical studies, calcite fills the walls of bio-
clastic grains (pelecypod) and also presents as
crystalline cements material. Occasionally, calcite
has been replaced by the phosphate minerals in
some bioclastic allochems. Anhydrite and gypsum
are common in the studied weathered phosphate
rocks and occurs as cementing material of flaky and
fibrous crystals filling inter-granular pores. Pres-
ence of these sulfate minerals in the studied sam-
ples reflects the increase of sulfate (SO4) in solution
either during the deposition or during the cemen-
tation processes. Quartz is recorded in all investi-
gated phosphorites. The petrographic examination
revealed the enrichment of quartz grains and silica
cement in the studied phosphorites, which con-
formed to the XRD results (Table 1).

4.3. Geochemical characterization

The obtained chemical analyses data of major
oxides (%) of the studied phosphorite (Table 2)
exhibit several proper characterizations of each
sample.

4.3.1. Major oxides distribution
The Lower phosphatic member (Campanian,

Upper Cretaceous), Duwi Formation, is an impor-
tant rock unit resulting in relatively high enrichment
of heavy metals and U content in south Esna, at the
western side of the Nile Valley [3]. In the present
study, three groups of major oxides distinguish the
phosphorites [36] CaO, P2O5, F, CO2, Na2O within

Table 1. Distribution of phosphate and non-phosphate minerals in the studied phosphate rocks.

Mineral
S. No.

Hydroxl-Apatite
(dahllite)

Calcite Quartz Gypsum Anhydrite

17e1 √ √ √ √
28e5 √ √ √
36e10 √ √ √ √ √
37e3 √ √
32e1 √ √ √
43e4 √ √ √ √
65e7 √ √ √
73e7 √ √ √ √
83e4 √ √ √
84e8 √ √ √ √
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the apatite lattice; SiO2, Al2O3, K2O, TiO2 of the
detrital origin and the Fe2O3, MgO, MnO of chem-
ical weathering. The concentration of the major ox-
ides in the studied phosphorites show similar
behavior of both SiO2, Al2O3, Fe2O3 and P2O5, CaO,
MgO, F groups. In this respect, the unaltered fran-
colite is mainly determined by the principal sub-
stitutions and displays only little variation of the
composition of 32% P2O5, 52% CaO, and 4% F
[37e39].
The chemical concentrations of CaO, P2O5, F in

the studied phosphorite samples match with these
of the published data of Egypt [40e43] and other
worldwide localities [44] (Table 3). The P2O5 and cU
contents in the studied phosphatic samples increase
with the thickness of the Lower Phosphorite Mem-
ber (Fig. 8).
Calcium oxide (42.5%) compared to that of P2O5

(30.6%) forming apatite recorded slight decrease.
Low content of CaO and P2O5 were recorded within
the upper member phosphorites, while SiO2, Fe2O3,
Al2O3, and L.O.I increase (Table 2). The contrast
content of these oxides may be related to the

depositional conditions with minor effect of diage-
netic process. Caþ2 cation can be substituted by
other elements as F (0.7e3%), in the lattice structure
of apatite, and/or Mg (2.2e9.5%) by the recrystalli-
zation of calcite cement into dolomite [32]. The
molecular-scale mechanisms by which substituents
of varying size and charge accommodated in the
apatite structure, but of fundamental importance,
are poorly understood to geoscientists [45]. The
decrease in CaO content is associated with increase
of MgO (up to 9.5%). This behavior may be related
to the digenetic process (dolomitization) approved
by the petrographical investigation that recorded
microcrystalline dolomite cement.
The fluorine accumulates in phosphatic materials

by the digenetic processes. It ranges from 0.7 to
3.4% in the bones and from 1.50 to 5.48% in phos-
phatized coprolites [32]. Many substitutions of F in
the fluorapatite structure are possible. The fluorine
content increases through digenetic processes by
both the microbial action on phosphatic grains [46]
and/or consolidation of phosphatic sediments [47].
Bacterial action in both coprolites and bone

Table 2. Chemical analyses of major oxides (%) of East Mahameid phosphorite.

Site B.H.No. S. No. P2O5 CaO MgO SiO2 Fe2O3 F Al2O3 Na2O K2O L.O.I

17 17e1 24.1 35 5.4 13 5 2.2 1.8 1.2 0.1 10
26 26e5 30.4 39 4 11 3 2.1 1.5 1.2 0.1 11
27 27e3 28.5 40 2.76 10.5 3.27 1.6 1.6 1.2 0.2 10.7

A 28 28e5 28.2 41.3 2.7 9.7 3 3 1.6 1.2 0.2 8
36 36e1 30 42 7 12 5.3 2.3 1.9 1.2 0.4 14

36e10 18 34 2.2 13 5.6 1.7 2.7 0.3 0.1 21
37 37e1 26.4 39 3.8 10 3 0.9 1.4 1.2 0.2 11

37e3 31 40 2.7 9 3 2.4 1.6 1.1 0.2 11
38 38e8 30.6 42.5 2.6 9 3 3 1.4 1.2 0.1 8
22 22e1 26.3 39.8 6 8 4 1.7 1.3 1 0.2 13

22e4 24.2 38.3 4.2 10.7 5 1.8 1.8 1.2 0.2 11
23 23e1 27.1 38.7 6 12.8 3 1.1 2 1.2 0.3 9

23e4 25.2 36 4.9 10.9 4.1 2.3 1.9 1.1 0.3 10.7
B 32 32e1 26.3 39.2 5 10.2 3 2 1.5 1.1 0.2 10.5

32e4 23.2 35 6.9 11 4.8 1.8 1.9 1.5 0.2 13.8
34 34e1 26.7 37 5 10 3 2.2 1.5 1.2 0.2 13.6

34e4 24 36 5.5 13.5 5.5 2.4 2 1.6 0.2 9.6
43 43e1 27.5 40.5 4 10.2 3 1 1.3 1 0.2 10.4

43e4 24 38 5.3 11 4 1.0 1.9 1.2 0.1 11
64 44e5 29 42 6.8 13 5.5 3 2 1.6 0.4 13

64e1 24.2 37 2.8 8 2 0.7 1.3 1.1 0.1 8
65 65e3 22.3 36 7.2 10 5 1.7 1.8 1.5 0.2 14

65e8 30.2 42 2.2 8.6 2.8 3 1.4 1.2 0.1 7.5
73 73e8 24 35.2 5.3 12.5 5 2.2 1.8 1.2 0.1 10.5

C 74 74e8 22 34 7.5 12.5 5.2 1 1.8 1.6 0.2 14.2
75 75e1 29.8 39.5 3.5 8.7 4 1.5 1.2 1.2 0.2 9.4

75e8 30 40 3.2 10 2.6 2.1 1.5 1.2 0.1 10.2
83 83e4 29.7 39 2.2 9 2.4 3 1.4 1.2 0.1 8
84 84e5 21.8 31.3 9.5 10.4 4.3 1.4 2.5 1.1 0.2 13

84e8 24 36 5.5 13.5 5.5 2.4 2 1.6 0.2 9.6
Min. 18 34 2.2 8 2 1 1.2 0.3 0.1 7.5
Max. 30.6 42.5 9.5 13.5 5.6 3 2.7 1.6 0.4 21
Aver. 26.1 35.77 4.8 10.7 3.9 1.9 1.7 1.19 0.19 11.35
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fragments of some Egyptian phosphorites played a
great role in changing of chemical composition and
elemental concentration. The bacterial tunnels have
highest concentration of fluoride than other places,
that due to the precipitation of fluoride by bacteria
[48]. The distribution contour map of the studied
phosphorites revealed the association of F, CaO
and eU with the thickness of the phosphatic beds
and P2O5 concentration (Figs. 9 and 10). In the
course of phosphorite formation the fluorine con-
tent somewhat rises up during lithification of
phosphorite sediments. Unconsolidated phosphate
concretions - lithified phosphorite concretions
shows that accumulation of fluorine in the concre-
tions takes place somewhat in advance of phos-
phorus [48].
The chemical concentrations of SiO2 (up to 13.5%)

and Al2O3 (up to 2.7%) in the studied phosphorite
samples is attributed petrographically to detrital
quartz grains and/or amorphous silica in the form of
chalcedony as cementing material, rather than to
clay minerals (Fig. 7). In few cases the amorphous
silica can be replace the phosphatic minerals in the
phosphatic grins. The replacement of phosphate
minerals by silica has been recorded in phosphatic
rocks at Sibaiya area [48].
The studied phosphorites contain slight higher

Fe2O3 content (5.6%) recorded as hematite and
staining of the phosphatic pellets (Fig. 7). The

hematite mainly formed during digenetic processes
may be due to oxidation of pyrite and/or glauconite
that always associate the phosphatic rocks to release
Fe, S with CaO to form hematite, anhydrite/gypsum
and MgO forming dolomite respectively. Anhydrite
is recorded in XRD (Table 1), and hematite is
detected in petrographical studies (Fig. 7).

4.3.2. Trace elements distribution
The enrichment of the trace elements in marine

phosphate rocks may originate from diagenesis,
hydrothermal solution or seawater [2]. The analyses
of trace elements in the studied phosphorite of the
Duwi Formation (Table 4) show nearly similar
average contents of Cr (114 ppm) and poor Cu
(23 ppm), Ni (37 ppm), Pb (4 ppm) and Zn (110 ppm)
compared to marine phosphorite forgiven by [49].
Cu, Ni, Cr, and Cd contents are higher than those
recorded by [31] for east and west Nile Valley. Cu
and Ni in the studied phosphorites less that in
phosphatic rocks south Esna that detected by [2]
that can reflect different sources and depositional
environment which led to the precipitation these
elements in the study area. Cr is primarily carried
by apatite and is further fixed in clays [50]. The el-
ements Cu, Cr, Ni, Pb, and V show a strong affilia-
tion to the phosphate fraction in sediments [51].
These elements are related to both replacement of
the apatite lattice structure (e.g. Sr) and adsorption

Table 3. The comparison study of the studied phosphorites with other localities.

Locality
Oxide (%)

1 2 3 4 5 6 7 8

a b a b

P2O5 26.1 25 28.27 25.95 24.75 25 23.4 28.9 32.98 30.2
CaO 38 36 40.38 39.01 38.72 39 34.21 44.4 51.76 43.6
Fe2O3 3.9 2.23 1.63 4.00 3.38 4.3 3.09 2.02 0.231 0.79
MgO 4.79 2.54 4.33 4.68 3.4 5 0.41 1.43 0.403 0.33
F 1.72 1.74 e 1.6 1.7 3 1.37 1.53 4.04 3.2
SiO2 10.72 18.5 8.87 10.88 7.3 10.8 16.6 4.12 2.09 11.2
AL2O3 1.85 6.09 2.90 1.76 1.7 1.8 4.26 0.62 0.55 1.8
Na2O 1.2 0.67 1.20 1.18 0.92 1.1 0.05 0.01 n.d. 0.86
K2O 0.19 0.06 0.97 0.21 0.2 0.2 0.62 0.07 n.d. 0.51
Cd 9.5 11 10 5 11 11 45 11
Cr 114.8 128 115 58 116 128 122 92
Cu 23.06 13 17 94 24 13 85 39
Ni 37.4 14 34 47 36 14 50 52
Zn 110.59 139 200 85 122 139 81 129
Uc (ppm) 73.2 76 68 27 60 69 36,4 57.4
Th (ppm) 3.65 3 4 5 6 3
Ra (ppm) 69 64 69 25 65 70

1-East El-Mahameid phosphorites (the present study).
2-El-Sibaiya East phosphorites [41].
3-Safaga-Quseir phosphorites [42].
4-El-Sibaiya West phosphorites [43].
5-Abu Tartur phosphorites [10].
6-South Esna phosphorites [44].
7 (a) Yunis mine; b) Um El-Hwuitat mine, Safaga-Qusseir area [2].
8-(a) Morocco; b) Florida [45].
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onto organic matter (e.g. Pb, Ni). Chromium, Ni, V
and Pb contents are most probably adsorbed onto
organic matter [52]. The concentrations of Cd, Cu,
and Ni in the phosphorites may be controlled
mainly mechanical weathering and climatic condi-
tion [2].
The binary relationships shown in diagrams

(Fig. 11) confirm such relations. The calculated cor-
relation coefficient (r) values of trace elements show
significant confident positive correlations of CaO,
Cr, Pb and U with P2O5, which indicates that these
trace and rare earth elements are associated with
phosphatic rocks. On the other hand, P2O5 has
negative correlations with SiO2, and Al2O3 which
revealed that these elements may be associated with
the detrital grains. Also, MgO has a negative

relation with phosphorous and it may relate to
diagenesis.
Strontium, Ba, and Zn exhibit a marked affinity

towards fixation in the apatite crystal lattice [53].
Moreover, Sr can be concentrated in tests and shells
up to 10% [54]. In this respect, Sr releases quickly
from apatite crystal lattice [55] to combine with the
liberated CO3

�2 forming strontianite beside forma-
tion of dolomite during the phosphatization diage-
netic process. The field work described small
dolomitic lenses that intercalated within the studied
phosphorites of the lower member. All of marine
carbonate fluorapatite when formed have the same
Sr content (0.24%) and the recorded variations are
due to later action [37].

Fig. 8. Iso-concentration maps show the concentration of P2O5 (a), cU
(b) in the lower Phosphorite Member of the drilled Duwi Formation in
East Mahameid area.

Fig. 9. Iso-concentration maps show the concentration of fluorine (a)
and CaO (b) in the lower part of the drilled Duwi Formation at East
Mahameid area.
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4.3.3. Geochemical behaviors of trace elements
The contents of the analysed trace elements (Co,

Cr, Ni, Cu, Pb) show abnormal concentrations of

both Cr and Ni. Meanwhile, the radioactive element
cU and eU exhabits abnormal concentrations.
The chemical Uranium (cU) iso-concentration

map shows higher content in site C (up to 110 ppm)
compared with site B. Moreover, the U distribution
exhibits weak positive (r ¼ 0.17) relation with that of
P2O5 (Table 5). This could be attributed to post-
depositional enrichment of uranium. The deter-
mined Th content is so low to be considered of
valuable interest. The cU values match well with
that of eU. In this respect, the iso-concentration map
of each of CaO VS F as well as VS P2O5 exhibit
similar distribution pointing to that phosphorites of
the studied area characterized by presence of CaF
mineral flour-apatite (Fig. 11). The plotted binary
relationships between each of the major oxides VS
P2O5 distinguished presence of negative correlation
with SiO2 and Al2O3. The correlation coefficient (r)
values confirmed positive correlation of correlation
field (Fig. 11). However, the phosphorite sample,
excluding the sample of the Upper Member. The
sample of the Upper Member does not match will
that the Lower Member and excluded plotted

Fig. 10. Iso-concentration maps show the concentration eU (ppm) in the
lower Phosphorite Member of the drilled Duwi Formation in East
Mahameid area.

Table 4. Concentrations of some trace and rare earth elements (REE) and radionuclides (ppm) of phosphorite of the study area.

Site B.H.No. S. No. Cd Cr Cu Ni Zn Pb Uc eU Th Ra REEs Uc/Th eU/Ra Uc/eU

A 17 17e1 11 115 28 45 205 4 50 43 6 63 283 8.3 0.68 1.16
26 26e5 14 95 25 47 96 9 52 50 4 55 292 13 0.90 1
27 27e3 5 129 26 41 29 3 79 70 4 74 89 19.8 0.94 1.12
28 28e5 11 147 28 45 153 7 56 41 1 45 289 56 0.91 1.36
36 36e1 13 138 21 39 14 3 57 51 3 64 280 19 0.79 1.1

36e10 12 139 14 30 95 2 80 74 4 86 81 20 0.86 1
37 37e1 22 96 32 38 64 2 75 70 4 87 95 25 0.8 1

37e3 9 131 10 20 140 3 62 56 2 68 254 31 0.82 1.1
38 38e8 4 135 11 12 168 2 72 68 5 73 195 14.4 0.93 1

B 22 22e1 10 111 24 39 96 4 75 70 2 83 87 37.5 0.84 1
22e4 17 85 20 41 95 7 58 51 6 63 289 9.66 0.8 1.1

23 23e1 11 82 29 46 95 1 56 51 3 62 291 18.6 0.82 1
23e4 3 108 20 41 95 8 70 62 2 74 96 35 0.83 1.1

32 32e1 7 93 27 48 95 3 68 59 6 70 179 11.3 0.84 1.1
32e4 11 115 28 45 205 4 90 92 6 63 283 15 1.4 0.9

34 34e1 9 117 29 45 96 11 78 70 6 85 82 13 0.82 1.1
34e4 8 97 26 43 155 1 69 71 5 56 305 13.8 1.26 0.9

43 43e1 3 115 11 30 123 2 77 70 4 73 96 19.3 0.95 1.1
43e4 10 113 33 41 72 3 64 66 4 59 289 16 1.11 0.9

C 64 44e5 11 111 30 47 204 6 50 45 4 62 217 12.5 0.72 1.1
64e1 7 138 24 26 27 5 80 75 3 84 84 26.7 0.89 1

65 65e3 7 99 27 41 153 2 65 69 4 52 285 16.3 1.32 0.9
65e7 7 138 24 26 27 5 132 135 3 84 84 44 1.6 0.9

73 73e8 8 155 26 42 158 4 88 90 4 53 285 22 1.69 0.9
74 74e7 8 109 17 38 94 3 76 69 2 83 86 38 0.83 1.1
75 75e1 13 158 19 44 181 8 74 67 2 78 192 37 0.8 1.1

75e8 6 157 25 43 99 9 76 69 2 89 84 38 0.77 1.1
83 83e4 8 134 24 29 57 5 112 85 3 84 82 37.3 1 1.3
84 84e5 8 30 11 21 74 1 50 51 1 46 79 50 1.1 0.98

84e8 6 97 26 43 155 1 69 71 5 56 305 13.8 1.26 0.97
Min. Min. 3 30 11 21 14 1 50 43 1 46 79 8.3 0.6 0.9
Max. Max. 22 158 33 48 205 11 132 135 6 89 305 37.3 1.69 1.1
Aver. Aver. 9.5 114.8 23 37.6 110.6 4.37 73.18 68.4 3.65 69 188 24.3 0.98 1.04

eU, equivalent uranium; Uc, chemical uranium.
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diagrams. CaOe P2O5 moderate negative correla-
tion of P2O5 VS each of Al2O3 and SiO2. These cor-
relations are significant and confident. The plotted F
VS each of CaO and P2O5 shows strong.

4.3.4. Radioactive element
The radiometric cU content in the studied phos-

phorite ranges from50 to 132ppmcompared to that of
East Sibaiya where cU content ranges from 43 to 135
(Table 3, Fig. 8b) and that recorded in Abu Tartur
phosphorite (23 ppm) [56]. Presence of U in someNile
Valley phosphorites incorporated in the apatite lat-
tice, while the other trace elements adsorbed on clay
cement [10]. It is indicated that the average of ura-
nium, thorium and radium contents in the studied
phosphorite are higher than the international aver-
ages [57e60]. The studied phosphorites could be

considered as uraniferous rocks, where they contain
more than twice of Clark value (4 ppm) [61].
The Th content in the studied phosphorites ranges

from 1 to 6 ppm, matching with that recorded in the
other Nile Valley phosphorites (e.g. East Sibaiya
phosphorite) but lower than that detected in Abu
Tartur phosphorites (5 ppm) [56]. The Ra content in
the studied phosphorite of East Mahameid ranges
from 46 ppm to 89 ppm which is lower than that of
East Sibaiya phosphorite and high Abu Tartur
phosphorites.
In recent years, the radioactive equilibrium/

disequilibrium study has been applied on different
geological processes during Quaternary such as
sedimentation in marine and continental environ-
ments [62], soil formation and evolution [63], and in
dating sedimentary and volcanic rocks younger than

Fig. 11. Correlation between major and trace elements in the studied phosphorites of East Mahameid area.
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300,000 years [64]. There are several methods and
ways by which the evidences and parameters of
radioactive equilibrium/disequilibrium states are
estimated. These include:

(1) Measurement of uranium content in the rocks or
ores using chemical techniques, where uranium
is expressed as (Uc) as well as radiometric
analysis, where uranium is expressed as Ur. The
equilibrium ratio (ER) is given as ER¼ Uc/Ur
[65]. The equilibrium is attained if ER ¼ 1,
otherwise disequilibrium is predominant.

(2) Measurement of both the equivalent uranium
(eU) and radium (Ra) concentrations (in ppm)
radiometrically. The equilibrium factor (P) is
given as P ¼ eU/Ra*eU [66].

In the present study, the radioactive equilibrium/
disequilibrium states of the investigated phospho-
rite deposits are discussed through the equilibrium
factor (P), i.e. P ¼ eU/Ra*eU, and ER, i.e ER¼ Uc/Ur.
The obtained results indicate that in the equilibrium
factor (P factor) in most samples is less than unity.
This reflects a state of radioactive negative
disequilibrium due to leaching of eU relative to Ra,
eU. In contrast, in the case of ER factor in phos-
phorite deposits. The ER factor is higher than unity
suggesting positive disequilibrium as a result of
uranium enrichment in most samples (Table 3). This
could be connected to recent uranium migration
from the upper black shale of the Dakhla Formation
to the studied phosphorite. Negative disequilibrium
in ER values in the studied phosphorite may be
related to uranium leaching processes by acidified
water to the lowermost parts.

4.4. Conclusions

Stratigraphical evidence favored deposition of the
Lower Phosphorite Member as slightly isolated
lenticular bodies with maximum thickness at
troughs of the epicontenental Sea. The Upper
Phosphorites Member deposited in deeper seawater
than the Lower Phosphorite evidenced by the small
size and amount of phosphatic peloids and bio-
clastic grains. The similar behavior of SiO2, Al2O3,
Fe2O3 reflects the detrital origin, while P2O5, CaO,
MgO, and F related to presence of fouro-apatite.
The microcrystalline dolomite cement is due to a
digenetic process geochemically supported by the
increase of MgO on the expanse of CaO.
The abnormal concentration of Cr, Ni favor

ultramaficemafic rocks of source of the detrital
material. Meanwhile the cU contents matching with
eU confirms their deposition within the phosphoriteTa
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accumulation. From the obtained results, the Lower
Phosphorite Member at East Mahameid area can be
recommended for local industrial production of
phosphoric acid, radioactive elements and hydro-
fluoric acid.
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