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ORIGINAL ARTICLE

Vibration Reduction of a ClampedeClamped
Microbeam Through a Positive Position
Feedback Controller

Heba Mosaa a,*, Magdy Kamel b, Hany El-Gohry b, Lamiaa Sabry Diab a,
Hamida Mohamed Shawky a

a Department of Mathematics, Faculty of Science (Girls Branch), Al-Azhar University, Egypt
b Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menofia University, Egypt

Abstract

This manuscript displays the vibration reduction of a clampedeclamped microbeam subjected to an excitation
external force through applying the positive position feedback (PPF) controller. The approximate solutions of the whole
system are obtained up to the second-order approximation with the help of the multiple-scale perturbation technique
(MSP). The stability analysis is studied by utilizing the frequency response equations near the simultaneous condition
ðU ¼ u1;u1 ¼ u2Þ. Time histories and response curve figures before and after control of the whole system are examined
numerically using the Runge-Kutta Fourth-order method (Maple(16) software and Matlab 7.7(R2014) software.
Numerical results of the influences of different parameters and the whole system behavior are investigated at the worst
resonance case to display the optimum conditions of decreasing the vibrations. The acquired results revealed that the
PPF controller plays a significant role in reducing the studied system oscillations. The effectiveness of the controller Ea

was about 162, means that the controller reduced the vibration to about 99.40%. A comparison between the numerical
and approximate solutions is presented to appear the validity of the results.

Keywords: Frequency response, Microbeam, Perturbation technique, PPF controller, Resonance, Stability

1. Introduction

V ibrations displayed in many applications
such as beam structures, structural systems,

and turbomachinery are considered an undesired
phenomenon as they may cause noise, failure,
damage, and on occasion demolish the whole sys-
tems. Nevertheless, they are occasionally coveted.
So, in order to repress the oscillations of various
nonlinear structures, numerous controllers are uti-
lized, including time delay control, and passive and
active control techniques. Ekici and Boyaci [1] dis-
cussed the microbeam oscillations of two different
subharmonic and super-harmonic resonances by
using the perturbation approach. Through that dis-
cussion, they clearly show that the limit conditions
have an effect on framework oscillations. Moreover,

several researcher efforts are loaded out for dis-
cussing the microbeam behavior in micro-electrical
mechanical system (MEMS) appliances [2e4]. Also,
in Ref. [5], the microbeam response when sand-
wiched between two electrodes is examined. To get
the motion's equation, they used the Galerkin
technique. The perturbation technique was utilized
for solving the nonlinear differential motion equa-
tion. All resonance cases are discussed. For studying
the effect of the different parameters on the
response curves of the entire system, they used the
parametric sensibility study.
Recent years have seen a rise in interest in the

discussion of different oscillating nonlinear systems
[6e10]. In numerous articles, the time delay was
used to minimize nonlinear structure oscillations.
Liu et al. [11] studied the effect of a mix of
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displacement delay and velocity delay controllers on
a cantilever beam. They have the ability for deter-
mining all of super-harmonic and subharmonic
resonance cases with the help of the multiple scales
approach. Also, the authors in Ref [12] displayed a
study of the effect of displacement delay and ve-
locity delay with a PD controller in a rotating beam.
They were able to deduce that the time delay with a
PD controller is superior to the active control
without delay in repression oscillations in this sys-
tem. Moreover, Hamed et al. [13,14] used both time
delay with PPF or PD controllers subjected to a
multi-excitation atomic force microscopy (AFM)
paradigm for extracting the delay effects on the
oscillation control's operation.
As the goal of most studies strives to repress vi-

brations, one of the most successful approaches in
active vibration control's domain is the PPF
controller. A lot of researchers have dedicated all of
their time to enhance the PPF controller's perfor-
mance. Amer et al. [15,16] presented a study of the
influence of PPF controller under harmonic excita-
tion on a nonlinear beam and a nonlinear system in
the existence of simultaneous resonance. They
deduced that the controller can minimize the oscil-
lations in Ref. [15] by about 99.98% and in Ref. [16]
by about 99.93% from their values before control. A
modified PPF control was offered as an alternative
to the traditional PPF by Mahmoodi and Ahmadian
[17]. For damping and repression, they utilized first-
order and second-order oscillators, respectively.
Omidi et al. [18] showed that the effect of multi-
positive feedback (MPF) approach on flexible con-
structions. They compared the outcomes obtained
by the novel nonlinear MPPF with those obtained by
the traditional PPF. Nonlinear oscillations for flex-
ible constructions and cantilever beam can be
minimized [19,20], utilizing the nonlinear modified
positive position feedback (NMPPF). Their results
deduced that the nonlinear MPPF has a notable role
in suppression performance, and it is more effective
in minimizing the oscillations than the PPF. Also,
Mohanty and Dwivedy [21] discussed the vibration
suppression of a nonlinear spring-mass primary
system under external and parametric excitations
through applying the modified traditional and
nontraditional nonlinear absorber. Utilizing the
multiple scales method, they derived the equations
of motion at simultaneous parametric, primary,
super harmonic with 1:1 internal resonance case.
They achieved by their results to reduce vibrations
by about 100% from its value before adding the
control for a certain range of operating frequencies.
Zhang and Chen [22] presented a study of applying
two modified nonlinear saturation-based controllers

(MNSC) and negative velocity feedback controller
(NVF) to repress vibrations of a horizontally sup-
ported Jeffcott-rotor system. They utilized the inte-
gral equation method to obtain the analytical
solutions up to the second-order approximations.
They reached to reduce vibrations to 99.8% by using
the proposed MNSC and NVF control that can
repress the transient vibrations and prohibit the
main system to have big amplitude vibration.
Moreover, Saeed et al. [23] applied a novel control
technique of the propotional-derivative (PD)
controller along with the eight-poles electromag-
netic actuator for suppressing vibrations of the
nonlinear Jeffcott-rotor system. They derived the
analytical results by utilizing the perturbation
technique up to the first-order approximation. They
illustrated that the Jeffcott-rotor system before uti-
lizing the control can display stable symmetrical
motion besides great vibration amplitudes for hor-
izontal and vertical directions. Also, they acquired
that the improper design of the gains of the
controller can destabilize the Jeffcott system and
force it to perform either chaotic or quasiperiodic
motions.
The article's study plan is as follows: In Section 2,

the microbeam system's mathematical modeling
after adding the PPF control is discussed, thereafter
employing the (MSP) approach to obtain approxi-
mate solutions up to the second-order approxima-
tion. In Section 3, stability investigation is studied by
utilizing the equations of frequency response. In
Section 4, the results and discussions are presented.
The effect of different parameters on the oscillating
microbeam system before and after the control are
examined. In addition, we observed all foretelling
from the analytical solutions and numerical ones
agree fairly well. Lastly, Section 5 displays the
conclusions.

2. Mathematical modeling

The graphic paradigm of the clampedeclamped
microbeam is displayed in Fig. 1. The dominating
motion's equation of the oscillating microbeam
system is discussed in Ref. [5]. The dynamical model
of the microbeam system motion's equation may be
modified by appending another equation of the PPF
controller displayed by

€uþm1 _uþu1
2uþa1u4 €uþa2u2 €uþa3u3þa4u5

þa5u7¼F cosðUtÞ þ k1v
ð1Þ

€vþm2 _vþu2
2v¼ k2u ð2Þ
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where u and v are the displacement of the micro-
beam system and the PPF controller, respectively;
m1;m2 are the damping coefficients; u1 ¼ a4

a3
;u2 are

the natural frequencies; a1 ¼ a1
a3
;a2 ¼ a2

a3
;a3 ¼ a5

a3
;a4 ¼

a6
a3
;a5 ¼ a7

a3
are the nonlinear parameters; the terms

asðs¼ 1; :::::::7Þ are presented in Ref. [5]; F is the
excitation forcing amplitude; U is the excitation
frequency of the microbeam system,; k1; k2 are the
control and feedback signal gains of the microbeam
system and the PPF controller, respectively; and 3 is
a perturbation parameter.

2.1. Perturbation analysis

As the parameters of the microbeam system
appear in the next perturbation equations, the pre-
vious parameters are scaling as follows:

m1¼ 3bm1;m2 ¼ 3bm2;a1 ¼ 3ba1;a2 ¼ 3ba2;a3 ¼ 3ba3;a4

¼ 3ba4;a5 ¼ 3ba5;F ¼ 3bF ;k1 ¼ 3bk1;k2 ¼ 3bk2

Utilizing the MSP) approach [24,25].

uðt; 3Þ¼u0ðT0;T1;T2Þþ 3 u1ðT0;T1;T2Þ þ 32u2ðT0;T1;T2Þ
ð3Þ

vðt; 3Þ¼v0ðT0;T1;T2Þþ 3v1ðT0;T1;T2Þ þ 32v2ðT0;T1;T2Þ
ð4Þ

Time derivatives are given by

d
dt
¼D0þ 3D1þ 32D2;

d2

dt2
¼D0

2þ23D0D1

þ 32
�
D1

2þ2D0D2
� ð5Þ

Substituting equations (3)e(5) into equations
(1) and (2) and then comparing the parameters of 3
as follows:

30 :
�
D0

2þu1
2
�
u0¼0 ð6aÞ

�
D0

2þu2
2
�
v0¼0 ð6bÞ

31 :
�
D0

2þu1
2
�
u1¼ �2D0D1u0� bm1D0u0� ba1�

u0
4
�
D0

2u0
�� ba2

�
u0

2
�
D0

2u0
�� ba3 u0

3

�ba4 u0
5� ba5 u0

7þ bFcosðUtÞ þ bk1v0 ð7aÞ
�
D0

2þu2
2
�
v1¼ �2D0D1v0� bm2D0v0 þ bk2u0 ð7bÞ

32 :
�
D0

2þu1
2
�
u2¼ �2D0D1u1�D1

2u0�2D0D2u0
� bm1ðD0u1þD1u0Þ � ba3

�
3u0

2u1
�

�ba1
�
u04

�
D0

2u1þ2D0D1u0
�þ4u1u0

3
�
D0

2u0
��

� ba4
�
5u1u0

4
�� ba5

�
7u0

6u1
�

�ba2
�
u02

�
D0

2u1þ2D0D1u0
�þ2u1u0

�
D0

2u0
��þ bk1v1

ð8aÞ
�
D0

2þu2
2
�
v2¼ �2D0D1v1�D1

2v0�2D0D2v0

� bm2ðD0v1þD1v0Þ þ bk2u1
ð8bÞ

The general solutions of equation (6), are pre-
sented through:

u0¼AðT1;T2Þeiu1T0 þAðT1;T2Þe�iu1T0 ð9aÞ

v0¼BðT1;T2Þeiu2T0 þ BðT1;T2Þe�iu2T0 ð9bÞ

where A and B are complex functions of T1;T2.
Substituting equation (9) into equation (7) as

follows:

Fig. 1. Graphic paradigm for the clampedeclamped microbeam beam.
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�
D0

2þu1
2
�
u1¼

��2iu1D1A� iu1bm1Aþ10ba1u1
2A3A

2

þ3ba2u1
2A2A�3ba3A2A�10ba4A3A

2

�35ba5A4A
3�
eiu1T0 þðbk1BÞeiu2T0 þ

�bF
2

�
eiUT0

þ �
5ba1u1

2A4Aþ ba2u1
2A3

�ba3A3�5ba4A4A�21ba5A5A
2�
e3iu1T0

þ �ba1u1
2A5� ba4A5�7ba5A6A

�
e5iu1T0

��ba5A7
�
e7iu1T0 þ cc ð10aÞ

�
D0

2þu2
2
�
v1¼½� 2iu2D1B� iu2bm2B�eiu2T0

þ½bk2A�eiu1T0 þ cc
ð10bÞ

where cc refers to the complex conjugate to the prior
terms. For obtaining a bounded solution, the secular
terms must be deleted. The general solutions for
equation (10) are obtained as:

u1¼M1ðT1;T2Þeiu2T0 þM2ðT1;T2Þe3iu1T0 þM3ðT1;T2Þe5iu1T0

þM4ðT1;T2ÞeiUT0

þM5ðT1;T2Þe7iu1T0 þ cc ð11aÞ

v1¼M6ðT1;T2Þeiu1T0 þ cc ð11bÞ

where Msðs¼ 1; 2; ::; 6Þ are complex functions into
T1;T2 , which are defined in the Appendix.
Substituting equations 9 and 11 into equation (8),

and after that eliminating the secular terms, the
particular solutions of (32) are acquired in the
following:

u2¼N1ðT1;T2Þeiu2T0 þN2ðT1;T2Þe3iu1T0 þN3ðT1;T2Þe5iu1T0

þN4ðT1;T2Þe7iu1T0

þN5ðT1;T2Þe9iu1T0 þN6ðT1;T2Þe11iu1T0 þN7ðT1;T2Þe13iu1T0

þN8ðT1;T2ÞeiUT0

þN9ðT1;T2Þeiðu2þ2u1ÞT0 þN10ðT1;T2Þeiðu2�2u1ÞT0

þN11ðT1;T2Þeiðu2þ4u1ÞT0

þN12ðT1;T2Þeiðu2�4u1ÞT0 þN13ðT1;T2Þeiðu2þ6u1ÞT0

þN14ðT1;T2Þeiðu2�6u1ÞT0

þN15ðT1;T2ÞeiðUþ2u1ÞT0 þN16ðT1;T2ÞeiðU�2u1ÞT0

þN17ðT1;T2ÞeiðUþ4u1ÞT0

þN18ðT1;T2ÞeiðU�4u1ÞT0 þN19ðT1;T2ÞeiðUþ6u1ÞT0

þN20ðT1;T2ÞeiðU�6u1ÞT0 þ cc

ð12aÞ

v2¼N21ðT1;T2Þeiu1T0 þN22ðT1;T2Þe3iu1T0

þN23ðT1;T2Þe5iu1T0

þN24ðT1;T2Þe7iu1T0

þN25ðT1;T2ÞeiUT0 þ cc ð12bÞ

where Nsðs¼ 1; 2; ::::; 31Þ are complex functions in
T1;T2 , which are presented in the Apppendix.

3. Stability investigation

The simultaneous primary and internal resonance
ðUyu1;u2 yu1Þ are studied in this portion for
obtaining the stability of this behavior system. So,
we enter the detuning parameter s1 as

U¼u1 þ s1 ¼ u1 þ 3bs1;u2 ¼ u1 þ s2 ¼ u2 þ 3bs2 ð13Þ

where s1 represents the nearness of U to u1 and s2
represents the nearness between u1; u2. Putting
equation (13) in equation (10) to obtain the solv-
ability conditions from the removed secular terms
and then scaling each parameter back to its
authentic value, we acquire

�2iu1D1A� iu1bm1Aþ 10a1u1
2A3A

2 þ 3a2u1
2A2A

� 3a3A2A� 10a4A3A
2 � 35a5A4A

3

þF
2
eis1T1 þK1Beis2T1 ¼ 0 ð14aÞ

�2iu2D1B� iu2bm2BþK2Ae�is2T1 ¼ 0 ð14bÞ
Putting

A¼
�a
2

	
eig1ðT1Þ;B¼

�
b
2

�
eig2ðT1Þ ð15Þ

where ða; bÞ and ðg1;g2Þ are the steady-state ampli-
tudes and phases for the microbeam system and the
PPF controller, respectively.
Substituting equation (15) in equation (14) and

then equating real and imaginary portions

_a¼ � m1

2
aþ F

2u1
sin q1 þ k1

2u1
b sinq2 ð16aÞ
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a _g1¼
3
8

�
a3

u1
�a2u1

�
a3þ 5

16

�
a4

u1
�a1u1

�
a5

þ
�

35a5

128u1

�
a7� F

2u1
cos q1 � k1b

2u1
cos q2

ð16bÞ

_b¼ � m2

2
b� k2

2u2
a sin q2 ð17aÞ

b _g2¼ � k2
2u2

a cos q2 ð17bÞ

where q1¼s1t� g1 0 _g1 ¼ s1 � _q1;q2

¼ s2tþ g2 � g1 0 _g2

¼ s1 � s2 þ _q2 � _q1 ð18Þ
Substituting equation (18) in equations (16) and

(17), we obtain the following:

_a¼ � m1

2
aþ F

2u1
sin q1 þ k1

2u1
b sin q2 ð19aÞ

a _q1¼as1�3
8

�
a3

u1
�a2u1

�
a3� 5

16

�
a4

u1
�a1u1

�
a5

�
�

35a5

128u1

�
a7þ F

2u1
cos q1 þ k1b

2u1
cos q2

ð19bÞ

_b¼ � m2

2
b� k2

2u2
a sin q2 ð20aÞ

b _q2¼bs2� k2
2u2

a cos q2�3
8

�
a3

u1
�a2u1

�
ba2

� 5
16

�
a4

u1
�a1u1

�
ba4 �

�
35a5

128u1

�
ba6

þ F
2u1a

b cos q1 þ k1b2

2u1a
cos q2 ð20bÞ

To reach the steady-state solutions of the micro-
beam system and the PPF controller by setting
ð _a¼ _b¼ _q1 ¼ _q2 ¼ 0Þ in equations (19) and (20) yields

m1

2
a¼ F

2u1
sin q1 þ k1

2u1
b sin q2 ð21aÞ



as1�3

8

�
a3

u1
�a2u1

�
a3� 5

16

�
a4

u1
�a1u1

�
a5

�
�

35a5

128u1

�
a7
�
¼ � F

2u1
cos q1 � k1b

2u1
cos q2

ð21bÞ

m2

2
b¼ � k2

2u2
a sin q2 ð22aÞ

bðs1�s2Þ¼ � k2
2u2

a cos q2 ð22bÞ
Using equation (21) and (22), we get two cases of

frequency response equations (FRE).
Case (1): (microbeam system in the absence of

control) in which ðas0; b ¼ 0Þ, the frequency
response equation is acquired from equations (21)
and (22) as follows:�
s1 � 3

8

�
a3

u1
� a2u1

�
a3 � 5

16

�
a4

u1
� a1u1

�
a5

�
�

35a5

128u1

�
a7
�2

þm1
2

4
a2� F2

4u1
2
¼0 ð23Þ

Case (2): (microbeam system in the existence of
control) in which ðas0; bs0Þ the frequency
response equation is obtained from equations (21)
and (22) as follows:

b2


ðs1 � s2Þ2þm2

2

4

�
� k2

2

4u2
2
a2¼0 ð24aÞ

�
as1 � 3

8

�
a3

u1
� a2u1

�
a3 � 5

16

�
a4

u1
� a1u1

�
a5

�
�

35a5

128u1

�
a7
�2

þm1
2a2

4
� F2

4u1
2
� k1

2b2

4u1
2

�Fk1b
2u1

2
¼ 0 ð24bÞ

For investigating the nonlinear solution's stability,
we may put

a¼a0þa1;b¼b0þb1;qn¼qn0 þ qn1; ðn¼1;2Þ ð25Þ

where a0; b0; qn0 are the solutions for equations (21)
and (22). Putting equation (25) into equations (19)
and (20), with the preservation of only linear terms
into a1; b1 and qn1, we obtain

_a1¼ �
�m1

2

	
a1þ

�
F

2u1
cos q10

�
q11þ

�
k1
2u1

sin q20

�
b1

þ
�
k1b0
2u1

cos q20

�
q21

ð26aÞ

_q11¼
�
s1

a0
�9a0

8

�
a3

u1
�a2u1

�
�25a03

16

�
a4

u1
�a1u1

�

�245a05

128u1

�
a1 �

�
F

2u1a0
sin q10

�
q11

þ
�

k1
2u1a0

cos q20

�
b1 �

�
k1b0
2u1a0

sin q20

�
q21 ð26bÞ
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The eigenvalues for equations (26) and (27) are
acquired from the following:

l4þg1l3 þ g2l2 þ g3lþ g4 ¼ 0 ð28Þ

where g1, g2, g3, g4 are the coefficients of equa-
tions (26) and (27). As a result, the nonlinear
solution's stability is obtained if the real part of
the eigenvalues is negative. Else, it is unstable.
With the assistance of the Routh-Hurwitz stan-
dard, the necessary and enough conditions that
the roots of equation (28), having negative real
portions are

g1 > 0;g1g2�g3 > 0;g3
�
g1g2�g3

�� g12g4 > 0;g4 > 0

ð29Þ

4. Results and discussions

In this section, the Runge-Kutta fourth-order
technique utilizing Matlab7.7 (R2014) and Maple16

software is applied to discuss the numerical solu-
tions of the considered system of equations (1) and
(2) before and after adding the control at the
following parameter values:

m1¼0:05;a1 ¼ 0:1319;a2 ¼ 0:3338;a3 ¼ 0:3331;a4

¼ 0:1299;a5 ¼ 0:2;F ¼ 1:5

U¼2:4;u1 ¼ 2:4;u2 ¼ 2:4;m2 ¼ 0:005;K1 ¼ 2:4;K2

¼ 1:2

Figure 2 shows the time history and phase plane
of the uncontrolled microbeam system at the case
ðUyu1; u2 yu1Þ. Meantime in this figure, we
noticed that the microbeam system amplitude is
nearly 67:5 from the excitation forcing F, and the
phase plane shows stability accompanied by several
limit cycles. Figure 3 displays the controlled micro-
beam system and the PPF controller and their phase
planes at the resonance Uyu1;u2yu1 state. In this
figure, the PPF controller minimized the vibrations
to about 0.006247 as shown in Fig. 3. So, the effec-
tiveness of this control is Ea (Ea ¼ uncontrolled
microbeam system amplitude/controlled micro-
beam system amplitude) is about 162, which means
the PPF controller minimized the amplitude for the
microbeam system by about 99:4%.

4.1. Effects of various parameters on the microbeam
system and the controller

The frequency response equations that are given
in equations (23) and (24) are solved utilizing
Maple (16) and Matlab7.7 (R2014) software as
illustrated in the following figures. Figure 4 illus-
trates the response curves for uncontrolled
microbeam system in equation (23) of Case (1)
ðas0; b¼ 0Þ under various values of the excitation
forcing amplitude F. It can be noticed that the
amplitude for the microbeam system is directly
proportional to the excitation forcing amplitude F.

Fig. 2. Uncontrolled microbeam system at the case Uyu1;u2yu1.
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Fig. 3. Controlled microbeam system and the PPF controller at the case Uyu1;u2yu1.

Fig. 4. Effect of the excitation forcing amplitude F in the absence of the control.

Fig. 5. Frequency response curves of the controlled microbeam system amplitudes. (a, microbeam and b, PPF controller) against s1 of Case (2) ðas0;
bs0Þ.
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Moreover, the response curve is bent to the right
which leads to a hard spring, and the jump phe-
nomena appears for increasing values of the
excitation forcing amplitude F. Figure 5 illustrates

the frequency response curves (FRC), which is
given in equation (24) of Case (2) ðas0; bs0Þ of
the controlled microbeam system amplitudes,
which consist of the microbeam system amplitude

Fig. 6 Effects of different parameters on the frequency response curves of the controlled microbeam system amplitudes (a, b).
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(a) and the PPF controller amplitude (b) versus the
detuning parameter s1 with the self same param-
eter values, where stable solutions are clarified by
solid lines, while unstable solutions are distin-
guished by dashed lines. From this figure, we can
sight that the amplitudes a ¼ 0.006247and
b ¼ 0.6247. These values are very close to the
amplitudes of the microbeam system (u) and the
controller (v) that are obtained in Fig. 3. The ef-
fects of different parameters are discussed in
Fig. 6. Figure 6a and b demonstrate the controlled
microbeam system amplitudes (a, b) in are directly
proportional to the excitation forcing amplitude F,
but inversely proportional to the natural fre-
quency u1. In addition the instability zones
become more extensive for increasing or
decreasing of the excitation forcing amplitude F

and natural frequency u1, respectively. The effect
of the damping coefficient m2 on the controlled
microbeam system amplitudes (a, b) is shown in
Fig. 6c. It can be seen that for big values of m2 of
the microbeam amplitude (a) the system's solution
becomes stable and the instability zones are van-
ished and the curve of the PPF controller ampli-
tude (b) is decreased and became more narrow.
Figure 6d indicates that the controlled microbeam
system amplitudes (a, b) are inversely propor-
tional to the control signal gain k1, which is in
good agreement with Fig. 8. Figure 6e shows the
increase of the feedback signal gain k2 on the
controlled microbeam system amplitudes (a, b). It
is noticeable for increasing the values of k2 leading
to a decrease in the amplitude (a) and increasing
amplitude (b) which is good agreement with Fig. 9.

Fig. 6 (Continued).
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The effects of the detuning parameter s2 on the
response curves are illustrated in Fig. 7. Figure 7a
shows that the controlled microbeam system am-
plitudes (a, b) arrive at lesser values at s2 ¼ 0 ,
which emphasized that the controller is capable to
minimize the oscillations to less values. Through
that figure, we noticed that the amplitudes
a ¼ 0.006247 and b ¼ 0.6247; these values are very
close to the amplitudes of the controlled micro-
beam system amplitudes (a, b) as shown in Fig. 3
and Fig. 5. The amplitude (a) of the microbeam
system are inversely proportional to the damping
coefficient m2, nonlinear parameters a1;a2, and the

natural frequencies u1;u2 as demonstrated in
Fig. 7b, d, e, and g. For increasing values of the
excitation forcing amplitude F and the nonlinear
parameter a3, the amplitude (a) of the microbeam
system is increased as displayed in Fig. 7c and f.
Figures 8 and 9 illustrate the effects of the control
and feedback signal gains k1; k2 of response curves
at s1 ¼ s2 ¼ 0, respectively. We noticed that the
stability zones are increasing for decreasing values
of k1; k2 or increasing for growing values of k2 of
the controller amplitude (b).
(a) FRC of the controlled the microbeam system

amplitudes of Case (2) ðas0; bs0Þ.

Fig. 7 Effects of different parameters on the FRC((a) microbeam) versus s2.
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Fig. 7 (Continued).

Fig. 8. The response curves amplitudes versus the control gain k1 at s1 ¼ s2 ¼ 0.
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ðas0; bs0Þ (a, microbeam and b, controller)
against s2.

4.2. Comparison with numerical simulation

In this subsection, we compared the analytical
solution presented using MSP in equations (16) and
(17), and the numerical simulation induced by the
Runge-Kutta method (RKM) in equations (1) and (2).
Figure 10 shows the closeness between the analyt-
ical solution (black dashed lines) and the numerical
simulation (blue solid lines).

5. Conclusions

The PPF controller was used in this study to
minimize the vibrations of a clampedeclamped
microbeam system. The MSP technique is used
for solving these equations analytically of the
controlled microbeam system. Also, the stability
behavior of the controlled microbeam system at
the simultaneous resonance cases using the fre-
quency response equations was discussed. The
whole system was examined numerically for
different parameters that affected the frequency
response curves before and after the control. Ac-
cording to the aforementioned study, we might
deduce that.

(1) With the aid of the PPF controller, the uncon-
trolled microbeam system amplitude is mini-
mized to 99:4 from its value.

(2) The controller's efficiency Ea was about 162 as
displayed in Fig. 3.

(3) The controlled microbeam system amplitudes (a,
b) are directly proportional to the excitation
forcing amplitude F, but inversely proportional
to the natural frequency u1. In addition the
instability zones become more extensive for
increasing or decreasing the excitation forcing
amplitude F and the natural frequency u1,
respectively.

(4) The controlled microbeam system amplitudes (a,
b) arrive at lesser values at s2 ¼ 0, which
emphasized that the controller is capable to
minimize the oscillations to lesser values.

Fig. 9. Response curve amplitudes versus the control gain k2 at s1 ¼ s2 ¼ 0.

Fig. 10. Time history of analytical solution (black dashed lines) and
numerical simulation (blue solid lines).

26 H. Mosaa et al. / Al-Azhar Bulletin of Science 34 (2023) 15e29



(5) The stability zones are increasing for decreasing
values of k1; k2 or increasing for growing values
of k2 for the PPF controller amplitude (b) as
shown in Figs. 8 and 9.

(6) The study demonstrates that all foretelling
derived from the analytical solutions and nu-
merical solutions agree fairly together well as
shown in Fig. 10.
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Appendix

Coefficients of equation (11)
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Coefficients of equation ð12aÞ
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