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ORIGINAL ARTICLE

A Numerical Approach to Solve the Two-body
Initial-value Problem with a Universal Variable
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a Space Science Department, Faculty of Navigation Science and Space Technology (NSST), Beni-Suef University, Egypt
b Applied Mathematics Department, National Research Centre (NRC), Egypt
c Astronomy and Meteorology Department, Faculty of Science, Al-Azhar University, Egypt
d Astronomy, Space and Meteorology Department, Faculty of Science, Cairo University, Egypt

Abstract

The solution of the two-body initial-value problem of gives inaccurate final state predictions for the orbital motions of
artificial satellites. This is due to the presence of singularities and the poor selection of variables. In the current study, we
numerically investigated the initial-value problem using the universal anomaly approach. To clarify the problem under
concern, we carried out several numerical examples using a homemade software package. We considered five space
missions, around the two planets Earth and Venus, which represent circular, near-circular, and elliptic orbits. We showed
that the universal anomaly approach facilitates the numerical and analytical treatments of the two-body dynamics and
works equally well for different types of orbits. Moreover, we developed a computation algorithm to handle the per-
turbed problem in cylindrical coordinates for the initial value problem taking into consideration the geopotential of the
two planets up to the third zonal harmonic J3 and the tesseral coefficient C22.

Keywords: Cylindrical coordinate, Initial value problem, Perturbation, Trajectories, Venus

1. Introduction

I n classical mechanics, the two-body initial-value
problem may be defined as: At an instant of time,

we give certain suitable initial conditions for the
involved quantities, such as the velocity and posi-
tion, to predict the subsequent motion. The two-
body problem describes the dynamics of two ce-
lestial objects in close proximity, abstractly viewed
as point masses. The problem assumes that the two
bodies interact only through their mutual gravita-
tional potential, and all other forces are ignored. The
problem deals with the orbital and rotational motion
of two finite bodies [1].
Beyond just the field of astrodynamics, the two-

body problem has broad applicability in numerous
engineering and scientific fields. One example of such
a system is an artificial satellite that rotates around
the Earth. Under the mentioned assumptions, the

problem is simple and represents the only integrable
system in celestial mechanics. In the case of
nonspherical mass distributions of either one of the
bodies, the problem becomes non-integrable and can
exhibit chaotic dynamics. Since the time of Newton
and Kepler, the solution of the classical gravitational
two-body problem has been completely obtained.
However, due to the existence of a singularity and
deficiency of choice of variables, inconveniences and
even difficulties occur when using classical methods.
The formulation of the equations ofmotion isdifferent
depending on whether the conic section is a hyper-
bola, a parabola, or an ellipse. Definite formulae are
required to determine the position for any case.When
dealing with the same orbit for a long time they give
satisfactory results. However, the orbit may suffer
qualitative and quantitative changes in the computa-
tions of interplanetary trajectories. On the other hand,
the conventional equations of motion of space
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dynamicareunstable in theLyapunov sense. Thus, for
the motion of spacecraft's, the solution of these
equations gives inaccurate predictions. To avoid these
inconveniences, several authors introduced success-
ful special ‘universal’ variables that regularize the
equations of motion of dynamics and maintain the
same formof the solution in all cases [2e5]. Due to the
importanceof the current problem, it hasbeenstudied
for decades. During last decades, studies were per-
formed by several authors, they used numerical or
approximation methods for solution of the Kepler's
equation. The earliest paper by Stumpff [6] and Her-
rick introduced a different formulation through the
manipulation of series expansion of conventional
conic variables [7]. Sperling obtained a related set of
universal variables from the transformed equations of
motion [8].
Mortari and Elipe [9] proposed a new approach to

solve Kepler's equation based on the use of implicit
functions. The proposed method, with limited
computational capability, is particularly suitable for
space-based applications. Tokis [10] obtained a so-
lution of the universal Kepler's equation in closed
form with the help of the two-dimensional Laplace
technique, expressing the universal functions as a
function of the universal anomaly and time. Wis-
dom and Hernandez [11] derived and present a fast
and accurate solution of the initial value problem for
Keplerian motion in universal variables that does

Table 1. Earth's satellite cartesian coordinate system.

x (km) y (km) z (km) vx (km.s�1) vy (km.s�1) vz (km.s�1)

Ablestar 008 3006.76 �6550.8 12.5658 2.66687 1.25074 6.8602
Altair 7582.87 �2218.92 8.0032 1.30561 4.6648 5.2367
Vanguard3 �7792.91 1302.12 4.58985 0.166568 �6.09413 3.93551

Table 2. Earth's satellites classical orbital elements.

ðeÞ ðaÞ (km) ðiÞ (deg) ðuÞ (deg) ðUÞ (deg) ðMÞ (deg)
Ablestar 008 0.0080970 7265.5 66.7634� 11.9263� 294.6118� 348.3713�

Altair 0.0113060 7970 47.2328� 40.3825� 343.6356� 320.5292�

Vanguard3 0.1664214 8262 33.3392� 84.2892� 170.4635� 294.4242�

Table 3. Venus's satellites cartesian coordinate system.

x
(km)

y
(km)

z
(km)

vx
(km.s�1)

vy
(km.s�1)

vz
(km.s�1)

Venera8 5603.52 2405.54 1767.59 �3.23399 3.72609 5.35745
Venera15 6494.05 1039.07 2391.12 �2.35075 �0.80682 8.84907

Table 4. Venus's satellites orbital elements.

ðeÞ ðaÞ Km ðiÞ deg
Venera8 0.03732 6591 51.7�

Venera15 0.8211 38,848 92.5�

Fig. 1. The position of the different Earth's satellites xðtÞ; yðtÞ and zðtÞ as
a function of time.
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not use the Stumpff series. They found that it per-
forms better than methods based on the Stumpff
series. Recently, Pulido and Pel�aez [12] introduced a
new approach for solving the Kepler equation for
hyperbolic orbits. The authors tried to substantially
improve well-known classic schemes based on the
excellent properties of the NewtoneRaphson itera-
tive methods. The developed code provides fast and
accurate solutions. Sharaf and Dwidar [2] set up the
initial value problem of space dynamics in universal
Stumpff anomaly and developed an analytical and
computational approach. In the present study, we

addressed numerically the two-body initial-value
problem using the universal anomaly approach. We
performed several numerical simulations to clarify
the problem.

2. Universal formulation

The classical equations of the two-body problem
cause troubles when a transition from one kind of
orbit to another occurs. Therefore, to make the
initial-value problem free from such troubles the
relevant two-body equations are derived utilizing
universal functions. To avoid using multiple for-
mulations to describe motion in different orbits,
the problem is generalized using transcendental

Fig. 2. The velocity of the different Earth's satellites _xðtÞ; _yðtÞ and _zðtÞ as
a function of time.

Fig. 3. The phase space plane of different Earth's satellites.
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functions. Utilizing these functions, applicable gen-
eral formulae can be obtained that are valid at the
same time for all types of conic sections.
Now the key differential relationships can be

summarized as follows [13]:

df ¼1
r

8>>>><
>>>>:

p d
�
tan

f
2

�

b dE

b dH

¼ h
r2
dt ð1Þ

Because, for the three types of conic sections,
we have

h
p
¼

ffiffiffi
m

p

r
;
h
b
¼

ffiffiffi
m

a

r
;
h
b
¼

ffiffiffiffiffiffiffi
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r
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where f is the true anomaly, E the eccentric anomaly,
m the gravitational parameter, H the hyperbolic
anomaly, a the semi-major axis, p the semi-latus
rectum, h the angular momentum, r the radius vec-
tor, and b is the semiminor axis. The variable c can
be considered as a new and independent variable, (i-
e) a kind of generalized anomaly. Therefore, the
nonlinear equations of motion can be transformed
into linear differential equations with constant co-
efficients, when c is used as an independent variable
instead of time. The transformation defined by

ffiffiffi
m

p dt
dx

¼ r ð3Þ
is called the Sundman transformation. Now the

values r; r; s ¼ dr
dc and t can all be found as solutions

of simple ordinary differential equations.
To do that, let us differentiate the identity

r2¼ r:r

and obtain

r
dr
dc

¼ dt
dc

r:
dr
dt

¼ rs

From Lagrangian coefficients

s¼ r:vffiffiffi
m

p ¼ ffiffiffi
p

p
tan

1
2
f

r
dr
dc

¼ rs

by cancelling the factor r and differentiating the
above equation, we have

d2r
dc2

¼ds
dc

¼ r
m

d
dt
ðr:vÞ¼ r

m

�
2m
r
�m

a
�m

r

�
¼1� r
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It is convenient here and subsequently to write
a for the reciprocal of a, we have

a≡
1
a
¼ 2

r
� v2

m

and may be positive, negative, or zero. In
summary, then

Fig. 4. The trajectory in space of the different Earth's satellites.
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dr
dc

¼s¼ ffiffiffi
m

p d2t
dc2

d2r
dc2

¼ds
dc

¼ 1� ar

d3r
dc3

¼d2s
dc2

¼ ffiffiffi
m

p d4t
dc4

¼�a
ffiffiffi
m
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so that s; r, and t are solutions of the equations

d2s
dc2

þas¼ 0;
d3r
dc3

þ a
dr
dc

¼ 0;
d4t
dc4

þ a
d2t
dc2

¼ 0 ð4Þ

The derivatives of the position vector r are
given by

dr
dc

¼ rffiffiffi
m

p v;
d2r
dc2

¼ sffiffiffi
m

p v� 1
r
r

lead in a similar manner to

d3r
dc3

þa
dr
dc

¼ 0 ð5Þ

Equations (4) and (5) represent a set of linear
differential equations with constant coefficients, for
which solutions can be found without difficulty.
Nevertheless, it is useful in this case to construct the
solutions in a form using a family of special uni-
versal functions.

2.1. The universal functions Unðc;aÞ

These functions are first introduced by [2] as

Unðc;aÞ¼cn
X∞
k¼0

ð�1Þk ðac2Þk
ðnþ 2kÞ!

Then the general form of Kepler equation was
obtained as

ffiffiffi
m

p ðt� t0Þ¼ r0U1ðc;aÞþs0U2ðc;aÞ þU3ðc;aÞ
together with

r ¼ r0U0ðc;aÞ þ s0U1ðc;aÞ þU2ðc;aÞ
s¼ s0U0ðc;aÞ þ ð1� ar0ÞU1ðc;aÞ
The expressions for the Lagrangian coefficients

are given as

F ¼ 1� 1
r0
U2ðc;aÞ G¼ r0ffiffiffi

m
p U1ðc;aÞ þ s0ffiffiffi

m
p U2ðc;aÞ

Ft ¼�
ffiffiffi
m

p
rr0

U1ðc;aÞ Gt ¼ 1� 1
r
U2ðc;aÞ

ð6Þ
We get the position and velocity of the satellite

r¼Fr0 þGv0

v¼Ftr0 þGtv0

The above equation (6) are termed ‘universal’
since it is void of singularities and valid for any
conic sections.

Fig. 5. The universal anomaly of different Earth's satellites as a function of time.
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3. Analytical formulation of cylindrical
coordinates

In this section, the two-body initial-value problem
of will be formulated utilizing cylindrical co-
ordinates. We will develop a computation algorithm
for the initial value problem of J2, J3, and C22 gravity
perturbed trajectories. Some numerical applications

are carried out, for selected test orbits, for the
problem of final state prediction.

3.1. Coordinate, velocity transformations

Let the rectangular coordinates (x;y;z) of any point
be expressed as a function of the cylindrical coordi-
nate (r;q;Ζ) so that

Fig. 6. The position of the different Venus's satellites xðtÞ; yðtÞ and zðtÞ as a function of time.
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x¼r cos q;y¼ r sin q; z¼ Ζ

where

0�r<∞;�p<q� p;�∞<Ζ<∞

The scale factors of the transformation are

h1¼1;h2 ¼ r;h3 ¼ 1

we have r ¼ ðx2 þ y2Þ1

=

2 , q ¼ arctan y
x , Z ¼ z,

and _r ¼ x _xþy _y
ðx2þy2Þ0:5;

_q ¼ x _yþy _x
ðx2þy2Þ; _Ζ ¼ _z

from the above equations: after some little re-
ductions, we obtain

Fig. 7. The Velocity of the different Venus's satellites _xðtÞ; _yðtÞ and _zðtÞ as a function of time.
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_r¼r
�
1�r2

�
; _q¼ h

ðrÞ2;
_Ζ¼ _z

€r¼rð _qÞ2þ2
�
vV
vr

�
;€q¼�2ð _rÞð _qÞ

r
þ 2

ðrÞ2ð _qÞ
vV
vq

; €Ζ¼vV
vΖ

the partial derivatives of the potential vVvr ,
vV
vq and

vV
vΖ can be given as

vV
vr

¼ cos q
vV
vx

þ sin q
vV
vy

vV
vq

¼ �rð _qÞcos qvV
vx

þ rð _qÞcos qvV
vy

ð7Þ

vV
vΖ

¼vV
vz

Fig. 8. The phase space plane of different Venus's satellites.
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3.2. General equations of motion in terms of
cylindrical coordinates

Let ðr; q; zÞ ¼ ðu1; u2; u3Þ , then the system of dif-
ferential equations can be written as

_u1¼u4 ¼ _r

_u2¼u5 ¼ _q

_u3¼u6 ¼ _z

€u1¼ _u4 ¼ u1u2
5 þ 2

vv
vu1

ð8Þ

€u2¼ _u5 ¼�2u4u5
u1

þ 2
u21

vv
vu2

€u3¼ _u6 ¼ vv
vu3

Fig. 9. The trajectory in space of the different Venus's satellites.
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4. The gravity perturbed trajectories

The potential V of the current problem including
the zonal harmonics J2 and J3, besides the equatorial
ellipticity coefficient C22 can be written as

Vðx;y; zÞ¼GMv

r
þGMv

r

�
Rv

r

�2�
J2

�
1
2
�3z2

2r2

��

þGMv

r

�
Rv

r

�2�
3C22

�
x2 � y2

r2

��

þGMv

r

�
Rv

r

�3�
J3
z
2r

�
3�5z2

r2

��
ð9Þ

Fig. 10. The universal anomaly of Venus's satellites as a function of time.
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where m ¼ GM the gravitational parameter of the
planet, R its radius, and r ¼ ðx2 þ y2 þ z2Þ1

=

2 the dis-
tance of the satellite with respect to the planet. The
set of differential equations that describe the rate of
change of the position and velocity of the satellite
about the planet can be written as

€x¼vV
vx

€y¼vV
vy

ð10Þ

€z¼vV
vy

where the planet's equatorial plane is chosen as the
reference coordinate system.

4.1. Initial value algorithm

Now, using cylindrical coordinates, proceed to
develop a general procedure for the final state pre-
dictions of the J2, J3, and C22 perturbed motion
(Table 5). The computational steps of this algorithm
are described as follows:
Input:

(1) xo, yo , zo and _xo, _yo, _zo at t ¼ to
(2) Flight time t ¼ tf
(3) Compute vV

vx , vV
vy , and

vV
vz

Output:

(1) ui; _ui, i ¼ 1; 2; 3 at t ¼ tf
(2) x, y, z and _x, _y, _z at t ¼ tf

Computational steps:

(1) Find the analytical expressions of the partial
derivatives by Equation (7).

(2) Compute the initial conditions uoi; i ¼ 1; 2; : : :; 6
for the differential system of equation (8) by
applying the transformation: ðx; y; zÞ 0ðxo; yo; zoÞ
and ð _x; _y; _zÞ0ð _xo; _yo; _zoÞ

(3) Use these initial conditions to solve numerically
the differential system of Equation (8) for ui; i ¼
1; 2; : : :; 6 at t ¼ tf

(4) Use ui; _ui; i ¼ 1; 2; 3 to compute ðx; y; zÞ and
ð _x; _y; _zÞ at t ¼ tf .

(5) End.

5. Results and discussions

In the present work, we have addressed numeri-
cally the two-body initial value problem. To

overcome the mentioned inconveniences, the
problem was expressed in terms of special ‘univer-
sal’ variables that regularize the equation of motion
of the two-body. For some selected artificial satellite
missions, we performed several numerical simula-
tions using a homemade software package by Mat-
lab. To show the validity of the universal variable
approach to deal with various types of orbits, to do
this, let us consider some different types of space
missions, such as nearly circular, elliptic, and highly
elliptic. We considered five artificial satellite mis-
sions around the two planets Earth and Venus (see
Tables 1e4). Given the initial state vector (r; v) at a
given initial epoch and numerically integrating the
equations of the current problem, we obtain the

Fig. 11. The phase space portrait for the Earth's satellites in cylindrical
coordinates.
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components of position and velocity of the body as a
function of time: xðtÞ; yðtÞ; zðtÞ; _xðtÞ; _yðtÞ; and _zðtÞ (see
Figs. 1, 2, 6 and 7). We note from the figures that the
variation of the different variables is uniform so that
the universal variable approach works equally well
for the various types of orbits.
Fig. 3 depicts the phase space portrait for the

selected artificial satellite missions around the Earth,
while Fig. 8 depicts the phase space portrait for

missions around the planet Venus. The phase space
is a useful graphical method for determining quali-
tative information about the behavior of dynamic
systems. The phase space of the current problem is
described for the initial state vectors mentioned in
Tables 1 and 3 It is straightforward to observe that
most of the phase trajectories are almost elliptical
closed orbits, while in the case of satellite Venera 15,
Fig. 8b, the phase trajectories show a distortion
introduced by its high eccentricity. Figs. 4 and 9 de-
pict the trajectories of the regularized motion equa-
tions in the three-dimensional space of the initial-
value problem. The two figures represent the tra-
jectories of the selected missions around both the
Earth and Venus. The initial state vectors r0 and v0
are given in Tables 1 and 3, as mentioned above. It is
clear that, using the universal anomaly approach, all
the three-dimensional space trajectories are suffi-
ciently smooth for the different selected types of or-
bits. Figs. 5 and 10 show the smooth variations, for
the various types of missions, of the universal
anomaly as a function of time. Figs. 11 and 12 show
the phase space portraits for the selected missions, in
cylindrical coordinates, around Earth and the planet
Venus, respectively. It is visible that the phase spaces
are smooth. As a final result we can see from the
current discussion that the universal anomaly
approach facilitates the numerical and analytical
treatments of the two-body dynamics, in particular
the study of the artificial Earth satellite orbits.

5.1. Conclusions

The solution for the initial-value problem some-
times gives undesirable and inaccurate results due to
the poor selection of variables that describe the dy-
namic problem. Also, the presence of singularities
causes a lot of troubles in the final state prediction.
To overcome the mentioned problems, Sund-

mann introduced a family of transcendental func-
tions to make all applicable general formulae valid
for different types of orbits. We treated the problem
numerically, using these transcendental functions,
for some selected space missions and showed the
appropriateness and validity of the universal
anomaly approach to obtain better results.
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