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ORIGINAL ARTICLE

Global Stability Analysis and Numerical Simulation
for Nonlinear Ecological Model with Delay

Mohamed Ismail Abdelrahman*, Ashraf Abdelmoez Gouda

Department of Mathematics, Faculty of Science Al-Azhar University, Nasr City, 11884, Cairo, Egypt

Abstract

Discrete models are particularly useful for modelling population dynamics when the population size remains small
over several generations or when it is relatively constant within a single generation. We focus on finding effective so-
lutions to the challenges posed by such populations. In our research, we have successfully used qualitative analytic
techniques to study a three species model. It is important to consider the reproductive process and other population
dynamics as happening in real-time, even for species with unclear reproductive seasons. While the delay technique has
introduced some complexities, we have identified sufficient conditions to address them. Our study examines the global
stability of a three species ecological model that does not consider delayed intraspecific competition. We analyze a
delayed Lotka Volterra system, which demonstrates global stability when the interaction matrix is effective. We present
numerical simulations to illustrate the theoretical results of the delay differential equation. Since delay differential
equation models are always challenging to solve, we propose the use of JiTCDDE (just-in-time compilation for delay
differential equations) of the DDE integration method to solve the dynamical three species models.

Mathematics Subject Classification (2023): 35A01, 92C17, 93D301

Keywords: Equilibrium points, Global stability, Time delay, Numerical simulation

1. Introduction

E cology is a branch of science that investigates
how living things connect with their sur-

roundings. Understanding the variables that influ-
ence the distribution, abundance, and interactions
of organisms in their natural habitats is the primary
objective of ecological study. In population dy-
namics, disease modelling, neural networks, and
other significant fields of science, delay differential
equations (DDEs) have been extensively used to
describe these interactions.
When accounting for time delays that are present

in biological systems, such as the maturation period
of biological species, the time required for synaptic
transmission between neurons, and the incubation
period in epidemic models, it is frequently more
accurate to use differential equations than it is to use
ordinary differential equations (ODEs).

The interaction between predators and prey is one
of the most vital biological relationships, and as
such, researchers have given it significant attention
[2e4,10,15e17]. To gain a better understanding of
predator-prey dynamics, several mathematical
models, including those that incorporate time de-
lays in DDEs, have been proposed and developed.
In the field of mathematical biology, the stability
analysis of Lotka Volterra systems with delays
[6,8,9,12,13,18] is of great interest because it sheds
light on the long-term behavior of biological sys-
tems. The dynamics of prey-predator models have
been extensively studied to examine the stability of
positive equilibria and the presence of non-negative
equilibria.
This study examines three species delayed Lotka

Volterra systems, which are intricate and capable of
displaying a variety of behaviors based on the initial
conditions and parameter values. We concentrate on
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the system's difficult global stability analysis, which
calls for the creation of cutting-edge mathematical
methods. Exploring the system's dynamics and
determining the prerequisites for its long-term secu-
rity are our main objectives. We provide a compre-
hensive explanation of our mathematical model and
assumptions in Section 2, followedby a proof of global
stability with discrete delay in Section 3. We provide
numerical models in Section 4 to demonstrate the
viability of our key findings. In the final section, we
offer a succinct summary of our results.

2. Mathematical model

We investigate the global stability of a three spe-
cies Lotka Volterra system with delay

x01ðtÞ¼½a1x1ðtÞþa2x2ðt�t12Þþa3x3ðt�t13Þþa�x1ðtÞ;
x02ðtÞ¼½b2x2ðtÞþb1x1ðt�t21Þþb3x3ðt�t23Þþb�x2ðtÞ;
x03ðtÞ¼½c3x3ðtÞþc1x1ðt�t31Þþc2x2ðt�t32Þþg�x3ðtÞ

9>>=
>>;

ð2:1Þ
with conditions

xi¼jiðtÞ�0; ði¼1;2;3Þ; t2½�t0;0�;jið0Þ > 0:

Where xi are the species density i, and a; b;g are the
rates of generation, tij > 0; isj; fi; j¼ 1; 2; 3g; t0 ¼
maxftijg; ai; bi; ci; fi¼ 1; 2; 3g “are constants”, and
jiðtÞ continuous on ½ � t0; 0�.
And (2.1) assumed to take a single non-negative

equilibrium bx ¼ ðbx1;bx2;bx3Þ. Sufficient conditions are
provided for system (2.1) to guarantee the global
stability of bx. One can verify that the following
condition (I) is stronger than any known necessary
restrictions to guarantee the global stability of bx [14].

2.1. Condition (I)

a1<0;b2<0; c3<0;�a2b1 � a1b2;
if a2b1<0;a2b1<a1b2;
if � a3c1<0;�a3c1 � a1c3;a3c1<a1c3;
if b3c2<0;�b3c2 � b2c3;b3c2<b2c3;
b2 � b1;a1 � c2;a3 � b2:

9>>>>=
>>>>;

ð2:2Þ

In reality, it will be established that, in the particular
case of, condition (I) is necessary for the system
global stability.

a1 < 0;b2<0;�a2b1 � a1b2;a2b1<a1b2 if a2b1<0:

3. Global stability

Theorem 3.1. If and only if condition (I) is satisfied,
(2.1) is globally stable when tij � 0.

Proof. Sufficiency. By using the transformation

bx1¼x1 � x1;bx2 ¼ x2 � x2;bx3 ¼ x3 � x3 ð3:1Þ
where, (2.1) has a non-negative equilibrium bx ¼ ðbx1;bx2; bx3Þ, it becomes

x01ðtÞ¼½a1x1ðtÞþa2x2ðt�t12Þþa3x3ðt�t13Þ�ðx1ðtÞþbx1Þ;
x02ðtÞ¼½b2x2ðtÞþb1x1ðt�t21Þþb3x3ðt�t23Þ�ðx2ðtÞþbx2Þ;
x03ðtÞ¼½c3x3ðtÞþc1x1ðt�t31Þþc2x2ðt�t32Þ�ðx3ðtÞþbx3Þ;

9>>=
>>;

ð3:2Þ
we took xiðtÞ rather than xiðtÞ. Considering the
Lyapunov function [5] V : Dð�t; 0Þ2/R with

VðjÞ¼
X3

i;j¼1;isj

eij

Z0

�tij

j2
j ðrÞ drþ

X3

i¼1

diðbxi lnðbxiÞ
�bxi lnðbxiþjið0ÞÞþjið0ÞÞ;

ð3:3Þ

where

d1 ¼�2a21b
2
1;d2 ¼�2a21b

2
2;d3 ¼�2b22c

2
3;

e12 ¼ a22b
2
1; e21 ¼ a21b

2
1; e13 ¼ b22a

2
3;

e31 ¼ c21a
2
3; e23 ¼ c22b

2
3; e32 ¼ c22b

2
2:

By condition (I),

_VðjÞ� �b21½a1j1ð0Þ þ a2j2ð�t12Þ þ a3j3ð�t13Þ�2
�c22½b1j1ð�t21Þ þ b2j2ð0Þ þ b3j3ð�t23Þ�2
�b22½c1j1ð�t31Þ þ c2j2ð�t32Þ þ c3j3ð0Þ�2:

o
ð3:4Þ

Hence

F ¼ fj¼ ðj1;j2;j3Þ : _VðjÞ ¼ 0g ¼ fj¼ ðj1;j2;j3Þ : a1j1ð0Þ þ a2j2ð�t21Þ
þa3j3ð�t13Þ ¼ 0;
b1j1ð�t21Þ þ b2j2ð0Þ þ b3j3ð�t23Þ ¼ 0;
c1j1ð�t31Þ þ c2j2ð�t32Þ þ c3j3ð0Þ ¼ 0g:

9=
; ð3:5Þ

2 M.I. Abdelrahman, A.A. Gouda / Al-Azhar Bulletin of Science 34 (2023) 1e7



We simply demonstrate the Lasalle's invariant set
included in F offers only a zero solution [5] to
demonstrate the global stability. Now Consider
xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞÞ is any solution in F there-
fore, it must be satisfying

a1x1ðtÞ þ a2x2ðt� t12Þ þ a3x3ðt� t13Þ ¼ 0;
b2x2ðtÞ þ b1x1ðt� t21Þ þ b3x3ðt� t23Þ ¼ 0;
c3x3ðtÞ þ c1x1ðt� t31Þ þ c2x2ðt� t32Þ ¼ 0:

9=
; ð3:6Þ

Obviously, the equalities in (3.6) and system (3.2)
leads to x0i ¼ 0. Hence, bx is globally stable for (2.1).
Necessity. Linearized system's (2.1) characteristic
equation

x01 ¼ a1x1ðtÞ þ a2x2ðt� t12Þ þ a3x3ðt� t13Þ;
x02 ¼ b2x2ðtÞ þ b1x1ðt� t21Þ þ b3x3ðt� t23Þ;
x03 ¼ c3x3ðtÞ þ c1x1ðt� t31Þ þ c2x2ðt� t32Þ;

9>>=
>>; ð3:7Þ

becomes

l3þLy2 þMlþN þ Pe�lt ¼ 0 ð3:8Þ

where

L¼a1bx1 þ b2bx2 þ c3bx3; M ¼ a1b2bx1bx2 þ b2c3bx2bx3
þ a1c3bx1bx3; N ¼ a1b2c3bx1bx2bx3;

P¼ �ðb1c1b3bx1bx2bx3þa3b1c2bx1bx2bx3Þ;t¼ X3

i;j¼1;isj

tij :

If t ¼ 0, then (3.8) becomes

l3þLl2þMlþðNþPÞ¼0 ð3:9Þ
The uniqueness of the positive equilibrium bx re-

duces to Nþ Ps0. Then (2.1) if tij ¼ 0;
isj; fi; j¼ 1; 2; 3g; is globally stable, Nþ Ps0, the
eigenvalues of (3.9) possess a negative real parts,

L > 0;M ¼ 0;Nþ P>0 ð3:10Þ

We used the reality, L ¼ 0 is the sufficient and
necessary condition for (2.1), tij ¼ 0; isj; fi; j¼
1; 2; 3g; tobe integrable [7]. In the caseof b1c1b3 < 0 and
a3b1c2 < 0, if condition (I) fails, there exist a t0 therefore
for t beside t0, (2.1) can have a periodic solution. If
condition (I) does not imply (3.10) in addition to
b1c1b3 < 0 and a3b1c2 < 0 reduces P2 >N2.
Putting xþ iy ¼ l in (3.8), we get,

Fig. 1. Phase portrait and time series plot of the system (2.1) when a1 ¼ � 0:22;a2 ¼ 0:21;a3 ¼ � 0:22;b1 ¼ � 0:21; b2 ¼ � 0:21; b3 ¼ 0:125;
c1 ¼ � 0:2; c2 ¼ � 0:2; c3 ¼ � 0:25;a ¼ 0:45;b ¼ 0:73;g ¼ 0:875.
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x3 þ Lx2 � y2ð3xþ LÞ þMþNþ Pe�tx cosðtyÞ ¼ 0;
y3 � y

�
3x2 þ 2LxþM

�þ Pe�tx sinðtyÞ ¼ 0:

�
ð3:11Þ

Putting x ¼ 0, in (3.11) we get

Ly2�ðMþNÞ¼P cosðtyÞ ð3:12Þ

y3�My¼�P sin ty ð3:13Þ

From (3.12) and (3.13), we obtain�
Ly2 �M�N

�2þ �
My� y3

�2¼P2 ð3:14Þ

This implies that P2 >N2 is also true. Allowing y
to be a non-negative solution for (3.14) and
substituting in (3.13), we obtain t0 and (3.8) has an
eigenvalue iy at t0 and x0 > 0. (2.1) has a periodic
solution beside t0, according to Hopf bifurcation
theorem [5].

4. Numerical simulations

This section uses numerical simulation to enable
us visualize the aforementioned analytical
results and comprehend the impact of changing

Fig. 2. Phase portrait and time series plot of the system (2.1) when a1 ¼ � 0:22;a2 ¼ 0:21;a3 ¼ � 0:22;b1 ¼ � 0:21; b2 ¼ � 0:21; b3 ¼ 0:125;
c1 ¼ � 0:2; c2 ¼ � 0:2; c3 ¼ � 0:25;a ¼ 0:45;b ¼ 0:73;g ¼ 0:875.
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parameters on the system's overall dynamics (2.1).
The goals of this study are to validate the outcomes
of our analytical work and to identify the set of
control parameters that have an impact on the
dynamics of the system. As a result, system (2.1) is
numerically solved for various starting condition

sets and parameter sets. As can be seen in the
figures Figs. 1e5 below, system (2.1) has a globally
asymptotically steady positive equilibrium point
for the following set of artificial parameters.
JiTCDDE, a Python program created by [1], was
employed.

Fig. 3. Phase portrait and time series plot of the system (2.1) when a1 ¼ � 0:22;a2 ¼ 0:21;a3 ¼ � 0:22;b1 ¼ � 0:21; b2 ¼ � 0:21; b3 ¼ 0:125;
c1 ¼ � 0:2; c2 ¼ � 0:2; c3 ¼ � 0:25;a ¼ 0:45;b ¼ 0:73;g ¼ 0:875.
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Fig. 4. Phase diagram for the behaviour of the model equation (2.1) for the global stability of population with parametric values taken as a1 ¼ � 0:22;
a2 ¼ 0:21; a3 ¼ � 0:22, b1 ¼ � 0:21, b2 ¼ � 0:21; b3 ¼ 0:125; c1 ¼ � 0:2; c2 ¼ � 0:2; c3 ¼ � 0:25;a ¼ 0:45; b ¼ 0:73;g ¼ 0:875.

Fig. 5. Phase diagram for the periodic solutions of the model equation (2.1).
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5. Conclusions

In this paper, we recognised a Lotka Volterra sys-
tem with delay in three species. [11,14] was extended
to the three species with discrete delays. We
demonstrated that condition (I) is a sufficient and
necessary condition for global stability delays in
some ways. If condition (I) is studied, the appearance
of a periodic solution is also demonstrated. By
developing appropriate Lyapunov-function, we were
successful in obtaining certain sufficient and essen-
tial conditions for the positive equilibrium's global
stability. Our findings indicate that global stability of
the positive equilibrium is still possible if and only if
the system's matrix fulfils condition (I). Finally, nu-
merical simulation is used with a hypothetical set of
parameter values to complete our understanding of
the global stability behaviour of system (2.1).
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