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ABSTRACT

Vibration suppression using a positive position feedback (PPF) control for a nonlinear dynamical system
which subjected to an external force is studied. The proposed model is the vertical dynamic excitation of
structures induced by a single pedestrian walking along a straight path on flat and relatively stiff surfaces. The
multiple scale perturbation technique was applied to derive the first order approximate solution of the system.
The response equation and the stability criteria for the system were derived near the simultaneous primary and
internal resonance cases. MATLAB 14.0 have been used for the numerical studying to show the time history of
the main system with and without PPF controller. Also, the effect of the system parameters on the response
system have been studied. A comparison between the approximate and numerical solutions is illustrated and it
show a good agreement between them. It is found that (PPF) controller is very suitable for small natural
frequency dynamical systems subjected to primary resonance excitations.

Keywords: Positive position feedback controller; multiple scale perturbation method; response
equation; primary resonance case; external force.

1. Introduction

Studying the dynamical systems and suppressing the high amplitude of the resulted vibration
attractive many researchers. There exists more one strategy to suppress the vibration of the dynamical
systems, one of them is the active linear absorber based on positive position feedback (PPF) control.
The PPF control technique is applied by Jun [1]. It is demonstrated that this strategy is effective in
suppressing the high amplitude response of a flexible beam subjected to a primary external excitation.
Wang and Inman [2] used four conventional controller and their versions of hybrid bang_bang control
(on_off control) respectively. PPF controller was one of the used controllers for vibration suppression
and compared in terms of their energy consumption.

Cazzulani et al. [3] presented a technique of an active modal tuned mass damper (AMTMD). The
technique is compared with the PPF control which already presented in the literature. They resulted
that AMTMD achieves the same performances of PPF around the resonances, without increasing the
low frequency response. An experimental study is conducted by Orszulik and Shan [4] to show that a
PPF controller can be used to suppress the vibrations of a structure with unknown natural frequencies.
The PPF controller is applied on the structure which of a flexible manipulator with a collocated
piezoelectric sensor/actuator pair.

The active vibration control of clamp beams is investigated by Shin et al. [5]. They used multiple of
PPF controllers with a sensor/moment pair actuator to overcome the problems of the instability. It is
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illustrated numerically and experimentally that the vibration levels are reduced at the tuned modes of
the PPF controllers. Mitura et al. [6] presented nonlinear horizontal and vertical beam models.
Numerical results show that the PPF controller is a very good absorber for reducing the vibration of
the vertical beam for low level of excitation amplitudes. El-Ganaini et al. [7] studied a nonlinear
dynamic model which subjected to external primary resonance excitation. They used the PPF
controller to suppress the vibration amplitude of the system. An approximate solution is obtained by
applying the multiple scales perturbation technique (MSPT).

Jung et al. applied the PPF control [8] to reduce the vibration of the proposed model.
Experimentally, the PPF controller have shown that more effective than the proportional integral
derivative (PID) controller. The basic procedures for the modeling and simulation of a smart beam
were presented by Ghareeb and Schmidt [9]. More than one controller were applied, one of them is
the PPF controller. They illustrated the effect of the PPF controller on the amplitude of the peak
displacement of the smart beam and its magnitude. Omidi and Mahmoodi [10] introduced a method of
a nonlinear integral positive position feedback (NIPPF) that benefits from the advantages of both
integral resonant control (IRC) and PPF control. The results of the study investigated that the NIPPF
controller is effectiveness in suppression the nonlinear vibration. They used the multiple scales
method to get the approximate solution for the system.

A cantilever beam subjected to random base excitation is studied by Kaushik et al. [11]. The
piezoelectric patches and actuation are used as smart materials. The PPF controller is applied to
control the vibrations at all the resonant modes using piezoelectric sensor voltage feedback. The
vibrating system with cubic nonlinearities and external excitations is presented by EL-Sayed and
Bauomy [12]. They used two PPF controller to reduce the vertical vibration of the system. MSPT was
applied to the equations of the system to find approximate analytical solutions. Amer et al. [13]
investigated the effect of the PPF controller in suppressing the vibration of a micro-electromechanical
(MEMS) resonator. They used the multiple scales method to obtain the first order approximate
solution.

The techniques of PPF and negative derivative feedback (NDF) controllers was applied by Syed
[14] on a single link flexible manipulator featuring piezoelectric actuator. Based on the particular
studied system, the comparison between the two controllers concluded that NDF controller is overall
more effective in suppressing vibration than PPF controller. A nonlinear magnetic levitation system
was studied by EL-Ganaini [15]. The horizontal vibration of the system is suppressed by applying the
PPF controller. MSPT was applied to derive an approximate solution of the system which described
by a four first order differential equations. A strategy of a compensated positive position feedback
(CPPF) for active control of flexible structures with piezoelectric actuators was presented by Wu et al.
[16]. The advantages of the proposed CPPF strategy confirmed by the simulation results compared
with the conventional PPF methodology.

Enriquez-Zarate et al. [17] investigated that it could be using the PPF control to reduce the
vibrations in the building-like structure. The numerical results illustrated that the optimized PPF
control was effective in reducing the vibrations and lateral displacements of the building-like structure
by around 97%. Yaghoub and Jamalabadi [18] studied suppression of the mechanical oscillations of
the galloping system using the PPF control. The results show that the PPF controller is a powerful
method to decrease the galloping amplitude of the D-shaped prism. Kumar et al. [19] presented a
model of the vertical dynamic excitation of structures induced by a single pedestrian walking along a
straight path on flat and relatively stiff surfaces. Amer et al. [20] studied a Duffing oscillator system
subjected to harmonic force. They applied three different control methods; Positive Position Feedback
(PPF), Integral Resonance Control (IRC) and Nonlinear Integrated Positive Position Feedback
(NIPPF).The numerical comparison between the three different control methods illustrated that
NIPPF controller is the best for reducing vibration at a high rate and after a short time. The nonlinear
dynamic vibrations of a composite plate with square and cubic nonlinear terms subjected to external
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and parametric excitations are studied by Bauomy and EL-Sayed [21]. They applied Galerkin
procedure to convert the nonlinear partial differential equation of motion into a nonlinear ordinary
differential equation. PPF control is used to reduce the amount of vibration produced by the system. It
is found that PPF control is better than Nonlinear Saturation Controller (NSC) as presented in a
comparison which has been made between them. Also, there are many numerical methods for solving
differential equations [22, 23].

In this study the effect of applying the PPF control is illustrated for suppressing the vibration of
the system which described by (Eqn. 1) and reported in [19].

f cos(Qt)
- . ~ . P o . e &
U+ o’u+ 2 a0 + 28 &,U° + 2 &,c0,0u? + 3

u3

+2& @,u%u? + 25 AU’ + 28 EgwiU® = £ f cos(Qt)+ £ G,v

V PPF Controller @ u
~ = > — - S
G, V+a)2v+2&‘y2a)2V=gG2ul—@"—®

Fig. 1. Block diagram of the system

2. Formulation of the problem

The system under studying is proposed to be subjected to an external force and is expressed by
the following equation:

. . . . 20, . .
U+ U+ 240U+ 20,0° + 22,00 U% + —2U° + 22,0°U° + 20,07U° + 20,,0{u° = f cos(Qt) (1)
a)l
The system is effected by a PPF controller. The system is introduced by:

y : . . 2a; :
U+ U+2um, 0+ 20, 0% +2a, o, UU* + —2 U° + 20, U* U? + 20, @] U° + 201, 0} U°

@y
= f cos(Qt)+Gy @)
.. 2 .
V4@,V + 21,0,V =G,uU ®)
The values of the system is considered to be:
p=ei, G =¢G,a,=¢d, f=cf,(i=12;n=12,34,56) )
Equation of the system becomes:
y N . A 2ea, . . . .
U+ w’u+2¢ Lol +2e aU° +2¢ G,mUu” + =0 + 2 G,0°U° + 2¢ G.0U° + 26 G 0]U° =
a)l
e f cos(Qt)+eGy )
V+@dv+2e L, oV =eG,u (6)

3. Multiple scale perturbation technique

Applying the multiple scale perturbation method:
u(t,e)=uy (T, T,)+eu, (T,,T,)+O(e%) )

V(t,e)=vy(Ty,T,)+&v, (T, T,) +O(?) (8)
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where Ty=t, T, =¢t €)
The relations between the differential operators defined as follows:
d d> _ 22
E:D0+5Dl, W:DO +¢&(2D,D, )+ £°D; (10)
here D 2 2 11
w = -, = —
°oor, Tt oaT, )

Substituting equations (7) and (8) into equations (5) and (6) with using the relations (10) and
equating the like order of & | the following equations are obtained:

0

&
(D2 +a?)u, =0 (12)
(D3 + @} )v, =0 (13)

A

. . . 2
&'+ (D +@f )u, = ~2D,Du, — 2/, Doy, ) - 26, (Dyu, )’ —2aza)1u§(D0uO)—%(Douo)

1

3

—26,u2 (Dyu, )’ — 2d,0PU% — 2G,0uS + f cos(Qt) + Gy, (14)
(D3 + @ )V, =—2D,DV, — 2,0, (DyVy )+ G, (15)
The general solution of equations (12) and (13) can be expressed in the form:

U, = A(T, )€ + A(T, Je P (16)
Vo =B(T,)e"" +B(T,)e " (17)

Substituting equations (16) and (17) into equations (14) and (15):
(D + @} u, = —[ 2, (D,A) + 2i oo A+ 2i (&, + 36, — 3idk, ) of A A+ 208,000 A°A e

+ |:2dlwlz A2 :‘ eZi(UlTo - |:2| (&2 — aAa — iaAS ) a)lz A3 +1Od6w12 A4/E\] e3i601T0 + [2&40)12 A4:'e4ia)lT0

~ i 2 i f i AAN A N
—[Zaea)fA5]e5 “l +[GIB}e X -{E} 0% [alAA+ a4AZAZ] +CC. (18)
(D3 + @2 )v, = [ 2ie, (D,B) + 2i 2,0} B €™ +[ G, A e ™ (19)

The general solution of egns. (18) and (19) can be expressed as follows:

. A AN A3 A a4~ ) A
u, = _{ZLAZ} g2l +{'(0‘2 — 0 _'O‘s)A +5a6A4A:|e3i(olTo _[2054A4 }em% +[6¥6A5 }eSino

3 4 15 12

@, —
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Vv, =— % "™ +cc. (21)
(ef —ef)

Studying the system at the simultaneous resonance case of the primary resonance case: Q= @, and

the internal resonance case: @ = @,
Define the detuning parameters Oy, O, as follows:
Q=w+0,=w+&0,, 0,=0,+0,=0,+&0, (22)

4, Periodic Solution
4.1 simultaneous resonance

Eliminating the secular term in eqgns. (20) and (21):

A A

(D,A)=—fho,A—(a, +3d, —3ids ) o, A’ A+10ide A° A? _ 0 g 16y g (23)
4oy, 2,
A Iéz —i6,T,
(D,B) =—/1,0,B——% Ae™"" (24)
2w,
It is convenient to express A, B in the polar form:
A= %éi (T,)e™, B= %az (T,)e”™ (25)

Substituting equations (25) into equations (23) and (24)

~ +3/\ _3i ~ - A ." _- N _ n - _- A _A _/\
(éi‘l'iél@i):_/}la’lél_(az o3 0[5)601 éf+5|a6wl éf_ie i(@ 01T1)_ﬂé_2e i(p-9,-6,T) (26)
4 8 2ay 2ay

A

(& +idy05 ) = —f1pwody ——;(5)22 alei((ﬁl—cﬁz—&le) (27)

where & and ¢/, (i =1,2) represent the derivatives of &, and ¢, (i =1,2)with respectto T .
Return back every scaled parameter into its original form:

P B P/ L B R P S ey (i=1,2;n=1.2,...,6) (28)
& & & & &
Substituting equations (28) into equations (26) and (27):

(a2 +30(3 —3ia5)a>l af’ N 5ia6a)l a]&-', _Le—i((pl—o'lt) _i&aze—i(gol—(pz —O’Zt) (29)

& +igp = o) -

4 8 20y 20y
C IG i(0 -0, —
8y +iappy = Hpwody —2—26119'(¢l 7270) (30)
@7
where &; and ¢, (i =1,2) represent the derivatives of &; and ¢;, (i =1 2)with respect to t .
Consider that: 91 =@, —ot, 6’2 =@ —¢,—0,1 (31)
Substituting equation (31) into equations (29) and (30):
) +3
8, (0 +0) = sy, - I g St gy S
if - iIG -
———cos(,)—isin(6,)|-—=a,| cos(8,)—isin(b 32
oy L605(8) 150 (6)] ;2 [cos(6,) - isin (0] @
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o . 'G
8,+ia, (6, -6, + 0, -0, ) = 0,3, - o a,[ cos(6,)+isin(6,)] (33)
w,

Equating real and imaginary parts in egns. (32) and (33), the following equations obtained:
. (o, +3a;) o f. Ga, ) .

=| - = —a’ |-| — |sin(g)—| =2 |sin(6. 34
o[ a5 | in(a) 2 Jain(a) @
. 3a. o, S5a,w, f Ga,
91:(_01+ Z La? + ; 1a14j_£2w1a1jcos(01) (chos(e) (35)
. G .
aZ:(—,uza)zaz)+( 2aiJsm(ez) (36)

20,

. 3o, Sa,w, a Ga
6,=| - 51 a? 61a) |- cos(6, 2 —122 Icos(@ 37
’ ( Gt ATy alj (2a;1a1j ( )+[2a;2a2 Za)lalj (2:) 5

4.2 Fixed Point

Applying the steady state condition a1 = c’:l2 = 91 = 92 =0; the response equation can be expressed in
the following form.

d,a’+d,a’+d,a’+d,a’ +d,a’ +d, =0 (38)
where d, ( =1 2,. )are constants which have been determined (see Appendix)

5. Nonlinear Solution
To study the stability of the nonlinear solution of the obtained fixed points, let:

& =y +ay, O =0g+0,, 8 =8y,+8,, 6, =0y +0, (39)
where ay, 8,85, 05, are the solutions of egns. (34), (35), (36) and (37), whiledy, 61,8, 6, are
perturbations which are assumed to be small compared with &y, 6,8, 0.

Substituting equation (39) into equations (34 — 37) and keeping only the linear terms in 8y, 64,8, 6,
gives:

e e [N [

_ [ G,a,, J coS (020 )} 0, (40)

20,

[ 9 25 Tl >
0, = _%Jr%% +ﬂaf°}ail+{[zwla10jsm(gm)}gn{[2("12‘10}:08(020)}[21

i 8

+ (ﬁ]gin (6 )} 0,, (41)

L 20,8y,

| 2 ol ol Tl o [ 520 st @
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. o, 9a.w 25¢,. o, G f )
0, =|-—++—"2La +—Lg +| —2— |cos(@ + sin(@,) |6
21 a10 4 af|.0 8 aiO L 2(02&20 J ( 20 ):| ail |:( 2w1a10 j ( 10 ):| 11
N (al—oz)_[ G, JCOS(HZO)}%{[ Ga, Gy Jsm(ezo)}ez1 (43)
dy 20,2y, 203, 2w,a,

6. Numerical Solution

The numerical solution of the system which introduced by the equations (5&6) is determined by
applying the Runge-Kutta fourth-order method. The selected values for the system parameters are

given by:
Q=L o=1,0,=1,¢6=05 =01, 4,=0001,¢4 =015 4,=0.1,&=1/30,4,=-03,

&, =-03,4,=02 f=05,G =15 G, =13.

Amplitude
5 o
4] [=] th

1
-

00

1
500

L L
300 400
Time

_ 1
1'50 100

1
200

Fig.Fig. 2. Time history of the system without control at the resonance case 2=, .

The vibration of the system under studying before using PPF control when Q= e, is illustrated
by Fig. (1). The amplitude of the system vibration is about 1.3.

The effect of using a positive position feedback control for reducing the system vibration at the
simultaneous resonance case of the primary resonance case Qza)land the internal resonance case
@, =@, is illustrated by Fig.(2). As shown in Fig.(3), the system steady state amplitude under the
effect of the PPF control is about 0.0005, and the controller effectiveness Eais about 2600.The
frequency response curves for the main system with PPF control is demonstrated in Fig. (4), which
gives closed loop case. It is found two peaks are produced at the values 07 = —0.44 and 0, =184,
so they are creating a bandwidth in-between about 2.28.

0.3 T T . T . 0.6 T . T T
A B
0.2 N 0.4
0.1 0.2}
o o
- o
2 2
Z o Mo 5 o
E E
-4 <L
-0.1 -0.2
-0.2 -0.4
-0.3 : : ‘ : ‘ -0.6 : ‘ : : ‘
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time Time
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Fig. 3. A) Main system time history and B) Controller time history with PPF control at the simultaneous

resonance case { = Wand 0, = A, .

Amplitude

o 200 400 600
Time

Fig. 4. The effectiveness of PPF control for reduction the vibration of the system

3 6
A B

2.5 5
21 ] 4 1
= 1.5 { T 1 L .
1- \ / _ 2- ':: _
0.5} 1 1) \ k ]
: A 0 1 2 -2 A 0 1 2

ol ol

Fig. 5. Frequency response curve for the system with PPF control at the selected values for the system
parameters.Solid line: stable solution & Dot line: unstable solution

7. Effect of the system parameters on the response curve

In this section, Fig.s (6 — 15) show the effects of different parameters on the behavior of the
vibrating system: A) on the main system and B) on the controller. The selected values of the
parameters in this study are as mentioned before.

Fig. (6) show that the steady-state amplitude of both the main system and the controller is
monotonic decreasing for increasing the frequencies @; and @, in the case of the internal primary
resonance case @ = @, . So this type of controllers (PPF) is very suitable. The bandwidth of the two
peaks of both the main system and the controller reduced with increasing of the frequencies.

—_— w,=w,=03 | w,=w,=04 |—/ w,=w,=0.5
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12
B
8_
ol
1]
a4t
—
”;ﬁ::;““"m
4 q4 -2 4

Gl

Fig. 6 Effect of the internal resonance on the response curve.

Effect of the damping coefficients 4 and M, is illustrated in Fig.s (7&8) respectively. Fig.s (7)
and (8) appear that within creasing of 4 and 4, , the steady-state amplitude of the two peaks for both
the main system and the controller is decreasing. The bandwidth of the two peaks is to be smaller with
increasing of 4, . The amplitude is slightly affected by 4, and the bandwidth is not affected.

——  n,=0010 | —  p,=0.035 | —  p,=0.060
10.5
» ﬁm‘ B
o gl
7.5]
~ gl
~
By o
s 4.5 .
I st
3 ””RTMM
g
¢ 1.5} 3
Y i A -
-3 -2 -1 0 1 2 3 -3 -2 0 1 2 3
al ol

Fig. 7. Effect of #1 on the response curve.

W, = 0.0005

——  u,=0.0050

——  u,=0.0500
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1.5 7. . 3.75}

= 1 o 2.5
0.5¢ 1 1.25¢
3
0 s k¥ . 0 |
-2 -1 0 1 2 - 2
ol

Fig. 8. Effect of #, on the response curve.

Effect of the control signal gain Gl and the feedback signal gain G2 is illustrated in Fig.s (9&10)
respectively. Fig.s (9) and (10) appear that the bandwidth between the two peaks increases with

increasing of G; and G, which gives more flexibility for the controller job. This can increase the
safety factor because the value of 0; may deviate from 0 and go towards one of the values where the

peaks are located. The peaks values for the main system are not affected by variation of either Gl or

G,.

—  G,=025|—  G,=050 | —  G,=0.75

Fig. 9. Effect of Gl on the response curve.

— G,=015|—  G,=0.40 |—  G,=0.65
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[
B
4.5¢
S 3
1.5¢
-2 -1 0 1 2 -2 2
ol

Fig. 10. Effect of G, on the response curve.

Fig. (11) show that for increasing external excitation force f, the amplitude of the main system

and the controller is monotonic increasing and the frequency response curves bend away from the
linear curves.

Fig. (12) show effect of the detuning parameter on the response curve. The minimum value of
both the main system and the controller is observed that it occur when0; =0,

— f=0.25 | —— f=0.45 | —— f=0.65
B .
B
5, 4
4, 4
a3 g
2t ':‘:“3::’ b
1l .M
0 ! ! 1 ! 'Y 1 1 ! ! 0 1 L &*
5 4 3 2 4 0 1 2 3 4 5 S5 4 3 2 4 01 2 3 4 5
ol ol

Fig. 11. Effect of £ on the response curve.
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......

oooo

Fig. 12. Effect of ¢, on the response curve.

Effect of the nonlinear parameter@;”the coefficient of the fifth order term” is
illustrated by Fig. (13) which appears no effect in the main system amplitude and slightly
effect in the bandwidth of the two peaks that is slightly increasing with increasing &; . On the
other hand the controller amplitude is increasing with increasing ¢ in the negative interval
of 0;; while the controller amplitude is decreasing with increasing &g in the positive interval
of 0,and the bandwidth also slightly increasing with increasing ¢ .

— a,=0.05 | — o, =0.10 | — a, =0.15
6
:® B
.
+ . 4_5.
&+
S 3
1.5}
AV . .
92 1 0 1 2 lz2 -1 0 2
ol ol

Fig. 13. Effect of ¢4 on the response.

The relation between the system amplitude and the excitation force without and with
the control is demonstrated in Fig. (14). In the absence of control the system amplitude is
observed to increasing nonlinearly for a slight increase in the excitation force. After applying
PPF controller, the system amplitude leads to a saturation case that the relation became
horizontal, so the system amplitude is slightly change for largely increasing the excitation

force.
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1
— With Control
—=—=Without Control
0.8r B
o"‘
o8 oo“"— T
- -
[y~ -
-
0.4 = .
-
-
/"
0.2¢ id B
/’,
-~
o L
0 0.02 0.04 0.06 0.08 0.1
f

Fig. 14. Frequency response curve for the systemato = o, = 0

Fig. (15) show the system with PPF control and illustrated a good agreement between
the perturbation solution which obtained by MSPT and the numerical solution which
determined by applying Runge-Kutta fourth-order method.

——— Perturbation solution | = Numerical solution

0.4

Amplitude
=}

1
o
N

-0-44 200 400 600

Time
Fig. 15. the agreement between the perturbation solution and the numerical solution with PPF control

8. Comparison with previously published work

In a previous work [19], the authors present a model of the vertical dynamic excitation of
structures induced by a single pedestrian walking along straight path on flat and relatively stiff
surfaces. The main goal of the study was to create a model which could describe reliably time and
frequency domain of continuously measured vertical walking force records. A linear least square
identification technique was used in conjunction with the Fourier representation to identify values of
the modelling parameters. A damping is added to the structure by acting as a negative damper during
walking.

In this study, the presented modified system in [19] is controlled using PPF controller to reduce
the vibration produced of the main system. A damping is proposed to be positive. MSPT is applied to
get a solution of the studied system and examined the stability of this system. PPF controller
succeeded for reducing the produced vibration with ratio 99.5 %.

9. Conclusions

In this paper PPF controller is used to reduce the vibration produced from a modified hybrid
Rayleigh -Van der Pol-Duffing oscillator. The proposed oscillator is considered to be acted by a
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positive damper and subjected to an external excitation. MSPT technique was applied to derive an
approximate solution of the system. Oscillator equation is coupled to an active positive position
feedback (PPF) controller and they have been studied near the simultaneous primary and internal
resonance case. The results of this paper can be summarized as follows:

1) The worst resonance cases of the system are the simultaneous resonance case is the primary
resonance case = @, and the internal resonance case & = @), .

2) PPF controller is effective for reducing the produced vibration that the controller
effectiveness E61 is about 2600.

3) This type of controllers (PPF) is very suitable for small natural frequency dynamical systems
subjected to primary resonance excitations.

4) The vibration reduction controller frequency bandwidth may be controlled by controlling the
control signal gain Gland the feedback signal gain Gz that gives more flexibility for the
controller job.

5) The steady-state amplitudes of the main system is decreasing with increasing of the damping
coefficients and with decreasing of the excitation force.

6) The minimum steady-state amplitude of both the main system and the controller is observed
that it occur when 0y =0, .

7) After control, the relation between the main system amplitude and the excitation force became
horizontal that represents to a saturation case; while the relation between the controller and
the excitation force is directed nonlinearly relation.

8) Even nonlinear terms have absolutely no effect on the response of the system; while the
coefficient of the fifth order term has an effect on the response system. It is observed that its
effect on the negative interval of 07 is different about its effect on the positive interval.

Appendix
K,= Gle(Ul2 o) — 4oy K,= ,UzGZlez =40,
a)la)2|:(01_02) +(ﬂza)2) :| a)l|:(o-l_o-2) +(/‘2w2) }
25 15 s 2 2 [ Sa.K
dl:6—4a§ wf; dZ:Ea5 o, o dszﬁ{(aﬁ&g) +(3as) +[fﬂ
_1 w2k g1
d4—§[3a5 o, K, —(a, +3a3)a)1K2], d.=K? +K?; d,= 1o
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