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ABSTRACT 

In this paper inventory model of declining goods with ambiguous and imprecise details about available 

storage has been established. Here, our targets are: The optimal scheduling period. The optimal order-level. 

Minimize the wastage cost due to the deterioration. Minimize the expected average total cost under a restriction 

on the expected average varying deteriorating cost by using the Lagrange method. This model, is developed for 

continuously deterioration rate is constant or follows a two-parameter Weibull distribution with varying and 

constrained expected deteriorating cost, Where the lead time is only one period of time, without shortage and 

when demand is a random variable during any scheduling time. These probabilistic models are studied in two 

cases: crisp numbers and trapezoidal fuzzy numbers. Some special cases are deduced. There is a numerical 

illustration to illustrate the proposed model in the crisp case and the fuzzy case and the sensitivity analysis is 

performed. 

Keywords: Deterioration, Probabilistic demand rate, Scheduling period, Varying cost, Weibull 

distribution.  

 

1 INTRODUCTION 

In many inventory systems the impact of the deterioration is so critical that it cannot be 

disregarded. By deterioration we mean decay, degradation or spoilage in such a way that the object 

cannot be used for its original purpose, i.e. the object undergoes a shift in storage such that it loses its 

value partly or completely over time. In some models the item may be lost over time and therefore its 

price may decline based on its age, although in some other systems the item will become obsolete due 

to changes in design or technical advances. In any such cases, the loss of inventory due to 

deterioration cannot be ignored when evaluating the system, because it provides an incomplete model 

of inventory systems operations. Photographic videos, medical products and pharmaceuticals, other 

chemicals, electronic components are some of the examples of items where there may be significant 

degradation during their usual inventory storage period. Therefore, the failure must be taken into 

account when deciding on their storage policies. Many probabilistic models have been created for 

goods that are continually deteriorating in time for example, [13] produced periodic review inventory 

model for gumbel deteriorating items when demand follows pareto distribution. [12] studied a 

probabilistic inventory model with two-parameter exponential deteriorating rate and pareto demand 

distribution. [15] introduced an inventory model for deteriorating items with weibull deterioration 

with time dependent demand and shortages. [4] presented an inventory model for deteriorating items 

with quadratic demand and partial backlogging. [3] studied optimal control of production inventory 

model with exponential deterioration. [6] produced on a probabilistic scheduling period inventory 

system for deteriorating items with lead time equal to one scheduling period. [5] studied m-

scheduling-period inventory model for deteriorating items with instantaneous demand. [2] explained a 

note on an order-level inventory model for a system with constant rate of deterioration. Many 

probabilistic inventory models assume that the cost units are constant or that one of these units differs. 

Hundreds of articles and books present models for this under a wide range of conditions and 

assumptions. [10] studied probabilistic multi-item inventory model with varying mixture shortage cost 
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under restrictions. [9] deduced probabilistic periodic review  inventory model using 

Lagrange technique and fuzzy adapting particle swarm optimization. [14] produced multi-item EOQ 

model with varying holding cost a geometric programming approach. [11] examined periodic review 

probabilistic multi-item inventory system with zero lead time under constraints and varying ordering 

cost.  [8] introduce probabilistic single-item inventory problem with varying order cost under two 

linear constrints. [1] studied probabilistic multi-item inventory model with varying order cost under 

two restrictions. [7] explained procurement and inventory system: theory and analysis. 

In this paper, we use a different approach, in the absence of shortages we find a stochastic stock 

management mechanism that deals with goods that deteriorate. Radioactive materials used in medical 

diagnostics, coal or any other form of fuel used for heating boilers-particularly in glass, cement or any 

other similar industry where heating a furnace up to the certain temperature takes a considerable 

amount of time and also some medicines used during the treatment of deadly diseases are examples of 

failing products that could lead to disaster and should therefore not be permitted. 

This problem of finding the optimum scheduling period for an inventory model which is subject to 

continuous decline and stochastic demand is considered here, varying deteriorating costs, a restriction 

on the expected deteriorating costs, multi-items , non-zero lead time and with lead 

time equivalent to one scheduling period and then each scheduling period  is the lead time for the 

next scheduling period,  that might be the case with certain inventory systems in where the ordered lot 

comes at the time next order is placed. Under the conditions of no shortage and continuous variable 

time, the model is built. The mathematical model is analyzed for a deterioration function in a general 

form, the deterioration rate is constant or follows a two-parameter Weibull distribution and then its 

particular case is presented. The minimum expected total cost of the system is obtained. We evaluated 

the optimal policy variables in two sub models: the first is, as usual, when the cost components are 

considered as crisp values, and the second one is when the cost components are fuzzified as a 

trapezoidal fuzzy numbers, which is called the fuzzy model. Finally, a numerical example is solved 

and the sensitivity analysis is conducted to demonstrate the effects of increasing parameter values on 

the optimal solution for the system. 

2   Notations and Assumptions                                                                      

To develop the inventory model of deteriorating items with varying deteriorating cost, the 

following notations and assumptions will be used in this paper:  

2.1   Notations 

               Number of items. 

         The multi-item, single source. 

                An element of a random variable represents the time to the deterioration. 

              The demand for the  item. 

             The decision variable representing the length of the any scheduling period for the  item. 
*            The optimum scheduling period for the  item. 

        The demand    during any scheduling period    for the  item. 

   The mean demand    during any scheduling period    for the  item. 

               The average demand rate for the  item. 

            The deteriorating rate of the on hand inventory at time     for the  item. 

                Constant rate of deterioration for the  item. 

             The order-level of the system for the  item. 

      The on hand stock at the time an order is received i.e. at the start of the lead 



PROBABILISTIC INVENTORY MODEL WITH LEAD TIME EQUALS... 3 

                     time period for  item, where   is an order place units for the  item.  

*             The optimum order-level for the  item. 

               Inventory level initial for the   item for the current period. 

            The inventory level of the system at various points of time during the lead time for 

item. 

            The inventory location of   item at various points of time during the current period. 

        The number of units required to deteriorate for the  item. 

               The order cost per unit for the  item. 

              The inventory holding cost per unit for the  item. 

               The deteriorating cost per unit for the  item. 

        The varying deteriorating cost per unit for the  item,                            

                            

                  A constant real number chose to provide the best fit for estimated expected cost  

                      function, .  

              The limitation on the expected average deteriorating cost for the  item. 

               Lagrange multiplier for the  item. 

         The average inventory level per time unit for the  item. 

        The expected ordering cost for the  item.  

        The expected holding cost for the  item. 

 The expected varying deteriorating cost for the  item. 

 The expected total cost function for the  item. 

          The expected total cost function of the system. 

   The minimum expected total cost function. 

2.2   Assumptions  

1. The demand   is a random variable at any scheduling period , for the  item with 

probability density function (p.d.f.)  and  . 

2. The average demand rate is  where 

         

 is the mean demand during .  

3. The replenishment rate is infinite. 

4. Not permitted shortages.  

5. Non-zero lead time and equal to one scheduling period. 

6. The rate of deterioration is constant or follows a Weibull two-parameter distribution, 

, where  is the scale parameter,  is the shape parameter. It 

is assumed that the deterioration of units increases with time t > 0. 

7. The deteriorated inventory is not being repaired or replaced during the time under consideration.   
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3   The Mathematical Model for Crisp Environmental 

Consider the total cost of the system composed of three components. Since the number of 

replenishments per unit for  item is   , the expected average total cost per unit time of the 

system during the period is composed of the expected average order cost per unit time of   item, 

the expected average holding cost per unit time of  item and the expected average varying 

deteriorating cost of  item as follows: 

       

              
Notice that every scheduling period  is the lead time for the next scheduling period. Then we 

considered a pair of consequential scheduling periods and we called them respectively “the lead time” 

and “the current period”. Figure 1 show the inventory level of this system. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Graphical representation of the inventory level during 

the lead time period and the current period 

Then, note that the degradation in inventory is caused by demands and the deterioration of units, the 

differential equation representing the inventory level  of the system at time  

during the lead time is demonstrated by the following: 

         
Using the    limit condition, the solution of Eq. (4) is: 

               

Where                          

After the order of  ' unit has been realized then, the final inventory is:  

 

Which will be independent of  , iff  . For this, an order must be put for   

units, So that the final amount of inventory for the lead period after completion of the order is: 
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Where  will be the inventory level initial for the current period, the inventory would then deplete 

due to the demand and deteriorate with the preceding consideration. The inventory location  of 

 item in the interval,  follows the differential equation in the current period with 

demands   is given by: 

          
Using the   limit condition, the solution of Eq. (8) is: 

                 

Some drugs and medicines used in the remedy of deadly diseases are examples of a number of the  

deteriorating items whose shortage may lead to disastrous results and should not be allowed 

afterwards. So even the   maximum demand and the degradation of the units during the 

lead time and also the current period should not allow shortage. That means the  order level has 

to be from Eqs. (7) and (9): 

                

Then, from Eq. (7), (9) and (10), the average inventory level per unit time of the  item is given by:  

 

 

       

and the number of units expected to decline for the  item is given by: 

 

                                 
 

Then substituting from Eq. (11) and (12) in (3) we shall obtain the expected average total cost per unit 

time of the system for the period as follows:  
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In order to find the optimal  scheduling period, it is important to know the implied structure of 

the  and function. 

Consider the following relationship 

                             

hence                     

where  are known positive constants. 

3.1   Constant Deterioration Rate 

The model for: 

              

Therefore substituting from Eq. (14) and (15) in Eq. (13) we get: 

          

The objective is to minimize the expected total cost  under the constraint:                             

          

To solve this primary function which is a problem of convex programming, let us write the equations 

of the previews in the form below: 

          

Subject to:              

The Lagrange multipliers technique is used as follows to find the optimal values  for a given  

which minimize (16) under the constraint (17): 

 

The optimal value   may be determined by setting each of the corresponding first partial 

derivatives Eq. (18) equal to zero, which is minimizing  the expected total cost. 

i.e. 
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then we obtain: 

 

and 

                     

where     

Clearly, from (19) and (20) we calculate the optimal scheduling period  which are used to 

determine the minimum ( expected total cost and substituting from (14), (15) in (10), the 

optimal order-level is given by: 

                       

3.2   Deterioration Rate Follows Two-Parameter Weibull Distribution 

  

 As , neglecting the  and higher powers terms, Then substituting from Eq. (14) and 

(22) in Eq.  (13) we get: 

 

To find an optimal values   which minimize  under the limitations, the Lagrange 

multiplier technique with the Kuhn-Tacker conditions is used as follows: 
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The optimal value   may be determined by setting each of the corresponding first partial 

derivatives Eq. (24) equal to zero, which is minimizing the expected total cost. Then the following 

equations are obtained: 

 

                
and 

                   

Clearly, from equations (25) and (26) we calculate the optimal scheduling period  which are used 

to determine the minimum  expected total cost and the optimal order-level is given by: 

                     

4   Fuzzy Model and Solution Procedure 

In actual inventory systems, the cost parameters and various parameters that include price, 

marketing, and demand elasticity of providers are in nature imprecise and uncertain. This confusion 

introduced the Fuzziness notion. Since the model proposed is in a fuzzy environment, a fuzzy decision 

should be taken to meet the requirements for the decision, and the results should be fuzzy. So that we 

consider the model in fuzzy environment. Because of uncertainty it is not easy to precisely define all 

parameters. 

Let          
                

                

          

               

and         

be trapezoidal fuzzy numbers, where   are arbitrary positive 

numbers under the following restrictions: 

                      

                      

 

Hence, the left and right limits   -cuts of  and  are given as follows: 

         

  

     

        
and 
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By using signed distance method, the defuzzified value of fuzzy number is given by: 

          

          

 

Similarly, in the crisp case, the same steps can be applied here, except that the crisp values of 

 will be replaced by the fuzzy values of and . Then optimal 

values  can be calculated using the same previous equations to minimize expected annual 

total cost  for fuzzy case i.e. equations (16):(21) for constant deterioration and equations 

(23):(27) for Weibull deterioration. 

5   Special Cases 

5.1   Put   and  and   . Thus Eq. (16) and (19) for the 

single item is given by: 

                 
and 

 

Eqs. (28) and (29) are the same as those obtained by [7] for the similar model for deteriorating items 

without any varying or constraint of deteriorating cost for a single item if the lead time is equal to . 

5.2   When there is no deterioration, i.e.  then Eq.  for the single item is 

given by:   

                               

                            

and                             

Eqs. (30) and (31) are the same as those obtained by [7] for the similar model for nondeteriorating 

items. 

6   A Numerical Example  

To explain the inventory model described above, take the following parameter values for a 

hypothetical inventory system as shown in Table 1, Table 2 and . During 

the scheduling period  the demand  follows the uniform distribution defined by: 
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Table 1: The crisp parameters for multi-item  

Parameters                  Item 1           

                200             250             300  

                0.005             0.0055                 0.0060  

                5            6                  7  

                 0.01          0.014 0.018 

 
                 0.001          0.005 0.003 

               25         36 58 

             14        27 31 

 

Table 2: The fuzzy parameters for multi-item 

Parameters Item 1   

 (30,70,210,250) (40,80,260,300) (50,90,310,340) 

 (0.0045,0.0048,0.0053,0.0055) (0.0050,0.0051,0.0058,0.0061) (0.0052,0.0054,0.0062,0.0065) 

 (3,4,6,8) (3,5,8,10) (5,6,10,12) 

 (0.004,0.006,0.010,0.014) (0.006,0.010,0.014,0.018) (0.010,0.014,0.018,0.022) 

 (0.0005,0.001,0.001,0.0015) (0.003,0.005,0.006,0.007) (0.002,0.0025,0.003,0.004) 

 19 28 47 

 11 22 25 

SOLUTION: 

We are solve that   , i.e.  and if     

 , then . The optimal value  can be obtained by 

solving Eqs. (19) and (20) of the constant deterioration and Eqs. (25) and (26) of the Wiebull 

deterioration for different values of   and consequently the corresponding optimum order-level  

and minimum expected total cost of both the crisp and fuzzy environmental for three items are 

illustrated in Table 3 and Table 4. 

 

Table 3: Crisp and fuzzy values for constant deterioration 

 Crisp Case Fuzzy Case 

          

It
em

  
1

 

0.1 6.75257 0.022467 722.979 56.6837 5.80520 0.08448 610.131 44.9108 

0.2 5.74426 0.119338 608.723 61.5797 5.00491 0.17283 522.400 48.5229 

0.3 5.01275 0.195265 527.264 66.4397 4.41641 0.23991 458.643 52.0701 

0.4 4.46209 0.254428 466.725 71.1965 3.96843 0.29030 410.535 55.5112 

0.5 4.03503 0.300007 420.232 75.8104 3.61773 0.32745 373.129 58.8232 

0.6 3.69565 0.334506 383.566 80.2588 3.33677 0.35400 343.322 61.9950 

0.7 3.42040 0.359911 354.010 84.5300 3.10729 0.37205 319.083 65.0228 

0.8 3.19322 0.377909 329.739 88.6202 2.91377 0.38324 299.029 67.9069 

0.9 3.00297 0.389765 309.499 92.5299 2.75634 0.38889 282.194 70.6510 

I t e m   2
 

0.1 5.89359 0.045779 640.776 80.3930 4.98563 0.07163 529.616 63.7702 
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0.2 5.06914 0.123033 544.653 87.0218 4.35241 0.13492 458.785 68.5221 

0.3 4.46532 0.182107 475.647 93.4917 3.88159 0.18102 406.814 73.1037 

0.4 4.00705 0.226655 424.048 99.7430 3.51978 0.21373 367.272 77.4854 

0.5 3.64912 0.259516 384.260 105.744 3.23421 0.23592 336.305 81.6549 

0.6 3.36289 0.282941 352.630 111.479 3.00380 0.24981 311.472 85.6100 

0.7 3.12945 0.298729 327.066 116.947 2.81442 0.25714 291.164 89.3550 

0.8 2.93587 0.308331 305.992 122.149 2.65630 0.25928 274.279 92.8976 

0.9 2.77303 0.312917 288.353 127.095 2.52249 0.25731 260.041 96.2477 

It
em

  
3

 

0.1 4.56632 0.000975 992.617 126.071 3.60644 0.03060 764.556 103.588 

0.2 4.01986 0.049558 865.056 134.721 3.23893 0.05778 682.546 109.617 

0.3 3.60955 0.083798 770.912 142.992 2.95772 0.07329 620.442 115.273 

0.4 3.29176 0.106911 698.948 150.852 2.73641 0.08012 571.958 120.561 

0.5 3.03932 0.121352 642.366 158.290 2.55819 0.08047 533.163 125.500 

0.6 2.83454 0.129016 596.843 165.315 2.41189 0.07601 501.481 130.109 

0.7 2.66546 0.131379 559.506 171.942 2.28982 0.06795 475.161 134.412 

0.8 2.52372 0.129595 528.384 178.189 2.18656 0.05724 452.976 138.434 

0.9 2.40337 0.124573 502.018 184.079 2.09816 0.04459 434.040 142.195 
 

Table 4: Crisp and fuzzy values for Weibull deterioration 

 Crisp Case Fuzzy Case 

          

It
em

  
1

 

0.1 6.31817 0.01222 652.835 47.6029 5.503348 0.02870 564.225 38.150 

0.2 5.81033 0.06062 597.379 50.2168 5.09286 0.07155 520.294 40.0751 

0.3 5.38238 0.10326 551.232 52.8240 4.74487 0.10865 483.389 41.9845 

0.4 5.01784 0.14075 512.313 55.4127 4.44681 0.14069 452.009 43.8706 

0.5 4.70432 0.17362 479.107 57.9734 4.18916 0.16826 425.042 45.7276 

0.6 4.43232 0.20234 450.488 60.4991 3.96459 0.19185 401.652 47.5512 

0.7 4.19452 0.22734 425.602 62.9844 3.76741 0.21193 381.197 49.3384 

0.8 3.98514 0.24900 403.788 65.4252 3.59311 0.22888 363.176 51.0871 

0.9 3.79960 0.26766 384.532 67.8187 3.43808 0.24305 347.195 52.7959 

It
em

  
2

 

0.1 5.43322 0.02416 574.286 74.8417 4.41062 0.05387 460.366 62.0269 

0.2 4.91834 0.07224 515.975 79.4903 4.04192 0.08894 419.711 65.4215 

0.3 4.50178 0.11209 469.527 84.0566 3.74014 0.11653 386.797 68.7154 

0.4 4.15906 0.14484 431.781 88.5193 3.48928 0.13784 359.674 71.9000 

0.5 3.87298 0.17149 400.582 92.8642 3.27793 0.15387 336.985 74.9711 

0.6 3.63114 0.19288 374.421 97.0827 3.09775 0.16547 317.756 77.9275 

0.7 3.42442 0.20975 352.207 101.170 2.94257 0.17332 301.275 80.7698 

0.8 3.24597 0.22270 333.139 105.124 2.80768 0.17802 287.009 83.5003 

0.9 3.09057 0.23230 316.613 108.944 2.68947 0.18007 274.552 86.1220 

It
em

  
3

 

0.1 4.73933 0.03328 987.972 96.7710 3.96935 0.00548 817.267 76.7695 

0.2 4.38461 0.06707 909.178 101.709 3.70496 0.02882 760.282 80.1872 

0.3 4.08661 0.09519 843.808 106.545 3.48096 0.04728 712.390 83.5047 

0.4 3.83331 0.11841 788.803 111.264 3.28909 0.06158 671.640 86.7176 

0.5 3.61577 0.13737 741.954 115.860 3.12316 0.07234 636.589 89.824 

0.6 3.42722 0.15262 701.627 120.327 2.97842 0.08007 606.153 92.8239 

0.7 3.26246 0.16464 666.588 124.662 2.85120 0.08523 579.503 95.7185 

0.8 3.11740 0.17385 635.892 128.865 2.73858 0.08818 555.992 985099 

0.9 2.98885 0.18061 608.801 132.937 2.63828 0.08923 535.111 101.201 
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7   Sensitivity Analysis 

A sensitivity analysis is performed to verify the stability of the model according to different values 

of parameters  . We trade one parameter at a time retaining the opposite unchanged 

parameters, find  then calculate the following sensitivity measure 

, similarly for  . The results are summarized 

in Table 4 and Table 5.    
Moreover, we know that the optimal values of   would have been  for three items from Eq. 

(31) was disregarded degradation. Then find  for the three items that would have 

been in this case with each change in  . Finally, measure the potential cost reductions using 

the next formula as a compare model for nondeteriorating products:  

 
The results of the sensitivity analysis mentioned above and the potential saving of both the crisp and 

fuzzy environmental for the three items are illustrated in Table 5: Table 8. 

 

Table 5: Sensitivity analysis and potential savings for the three item with respect to    

C
ri

sp
 

         

It
em

  
1

 

0.006 10.73 1145.6 46.9181 58.967 58.461 -17.228 78.0760 39.907 

0.008 8.268 883.99 51.7194 22.443 22.271 -8.7579 97.7843 47.109 

0.010 6.753 722.98 56.6837 0.0000 0.0000 0.0000 117.099 51.593 

0.012 5.723 613.47 61.6965 -15.247 -15.147 8.8436 136.090 54.665 

0.014 4.976 533.93 66.7139 -26.310 -26.148 17.695 154.825 56.910 

It
em

  
2

 

0.010 7.997 867.20 69.9423 35.690 35.336 -12.999 148.493 52.899 

0.012 6.778 736.05 75.1549 15.007 14.868 -6.5156 172.816 56.512 

0.014 5.894 640.78 80.3930 0.0000 0.0000 0.0000 196.822 59.155 

0.016 5.221 568.29 85.6289 -11.407 -11.313 6.5129 220.601 61.184 

0.018 4.692 511.19 90.8495 -20.383 -20.223 13.007 244.238 62.803 

It
em

  
3

 

0.014 5.737 1244.8 113.271 25.644 25.403 -10.153 299.426 62.171 

0.016 5.082 1103.7 119.673 11.292 11.191 -5.0748 338.642 64.661 

0.018 4.566 992.62 126.071 0.0000 0.0000 0.0000 378.150 66.661 

0.020 4.150 902.76 132.453 -9.1267 -9.0522 5.0619 418.035 68.315 

0.022 3.805 828.51 138.812 -16.663 -16.532 10.106 458.383 69.717 

Table 6: Sensitivity analysis and potential of fuzzy values savings for the three items with respect to    

F
u

zz
y
 

         

It
e
m

  
1
 

(0.000,0.002,0.006,0.010) 10.341 1083.8 35.7375 78.136 77.628 -20.4255 54.1261 33.974 

(0.002,0.004,0.008,0.012) 7.4060 777.42 40.1937 27.575 27.419 -10.5031 71.5984 43.862 

(0.004,0.006,0.010,0.014) 5.8052 610.13 44.9108 00.000 00.000 00.0000 88.7164 49.377 

(0.006,0.008,0.012,0.016) 4.7919 504.13 49.6967 -17.455 -17.373 10.6565 105.5260 52.906 

(0.008,0.010,0.014,0.018) 4.0905 430.69 54.4897 -29.5381 -29.410 21.3289 122.072 55.363 

It
e
m

  
2
 

(0.002,0.006,0.010,0.014) 7.2034 763.49 54.0177 44.4829 44.1591 -15.2932 108.677 50.295 

(0.004,0.008,0.012,0.016) 5.8828 624.28 58.8716 17.9946 17.8743 -7.68158 130.784 54.985 

(0.006,0.010,0.014,0.018) 4.9856 529.62 63.7702 00.0000 00.0000 0.00000 152.526 58.191 

(0.008,0.012,0.016,0.020) 4.3347 460.88 68.6715 -13.0553 -12.9791 7.68596 173.963 60.525 

(0.010,0.014,0.018,0.022) 

 
3.8400 408.59 73.5579 -22.9781 -22.8513 15.3484 195.153 62.308 
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It

e
m

  
3
 

(0.006,0.010,0.014,0.018) 4.6837 991.42 91.5373 29.8705 29.6723 -11.6329 244.532 62.566 

(0.008,0.012,0.016,0.020) 4.0716 862.56 97.5665 12.8982 12.8177 -5.8125 281.562 65.348 

(0.010,0.014,0.018,0.022) 3.6064 764.56 103.588 00.0000 00.0000 00.0000 318.658 67.493 

(0.012,0.016,0.020,0.024) 3.2405 687.41 109.587 -10.1482 -10.0909 5.79209 355.880 69.207 

(0.014,0.018,0.022,0.026) 2.9447 625.02 115.560 -18.3501 -18.2510 11.5579 393.287 70.617 

 
 

Table 7: Sensitivity analysis and potential savings for the three items with respect to   

C
ri

sp
 

         

It
em

  
1

 

0.0006 8.0581 831.97 41.3052 27.5388 27.4401 -13.2297 169.513 75.633 

0.0008 7.0265 725.78 44.6306 11.2110 11.1731 -6.24403 220.746 79.782 

0.0010 6.3182 652.84 47.6029 00.0000 00.0000 0.00000 271.980 82.498 

0.0012 5.7928 598.71 50.3118 -8.31577 -8.29003 5.69057 323.214 84.434 

0.0014 5.3828 556.47 52.8149 -14.8048 -14.7605 10.9489 374.447 85.895 

It
em

  
2

 

0.0030 7.4767 788.95 62.9549 37.6117 37.3786 -15.8826 227.522 72.330 

0.0040 6.2463 659.74 69.1262 14.9658 14.8800 -7.63687 297.182 76.740 

0.0050 5.4332 574.29 74.8417 00.0000 00.0000 0.00000 366.843 79.598 

0.0060 4.8481 512.75 80.1981 -10.7698 -10.7147 7.1569 436.503 81.627 

0.0070 4.4028 465.90 85.2633 -18.9655 -18.8726 13.9248 506.163 83.155 

It
em

  
3

 

0.0010 8.4495 1757.4 70.9118 78.2857 77.8791 -26.7220 248.176 71.427 

0.0020 5.8667 1222.0 85.1949 23.7883 23.6822 -11.9624 471.251 81.922 

0.0030 4.7393 987.97 96.7710 00.0000 0.0000 0.0000 694.327 86.063 

0.0040 4.0734 849.68 106.772 -14.0506 -13.9974 10.3343 917.403 88.362 

0.0050 3.6221 755.90 115.714 -23.5746 -23.4901 19.5752 1140.48 89.854 

 

 

Table 8: Sensitivity analysis and potential of fuzzy values savings for the three items with respect to    

F
u

zz
y
 

         

It
e
m

  
1
 

(0.0001,0.0006,0.0006,0.0006) 7.0189 719.18 33.1288 27.5388 27.4633 -13.1618 123.791 73.238 

(0.0003,0.0008,0.0008,0.0013) 6.1203 627.32 35.7776 11.2110 11.1820 -6.21873 160.634 77.727 

(0.0005,0.0010,0.0010,0.0015) 5.5033 564.23 38.1500 00.0000 00.0000 0.00000 197.478 80.681 

(0.0007,0.0012,0.0012,0.0017) 5.0457 517.42 40.3149 -8.31577 -8.29609 5.67472 234.321 82.795 

(0.0009,0.0014,0.0014,0.0019) 4.6886 480.88 42.3171 -14.8048 -14.7709 10.9230 271.164 84.394 

It
e
m

  
2
 

(0.001,0.003,0.004,0.005) 5.9521 620.49 52.5643 34.9499 34.7828 -15.2557 196.442 73.242 

(0.002,0.004,0.005,0.006) 5.0333 525.07 57.4682 14.1186 14.0558 -7.34957 252.194 77.213 

(0.003,0.005,0.006,0.007) 4.4106 460.37 62.0269 00.0000 00.0000 0.00000 307.946 79.858 

(0.004,0.006,0.007,0.008) 3.9552 413.03 66.3110 -10.3243 -10.2831 6.90681 363.699 81.798 

(0.005,0.007,0.008,0.009) 3.6049 376.58 70.3708 -18.2687 -18.1989 13.4520 419.451 83.223 

It
e
m

  
3
 

(0.000,0.0005,0.001,0.002) 7.4239 1525.9 55.3700 87.0296 86.7047 -27.8750 179.241 69.109 

(0.001,0.0015,0.002,0.003) 4.9708 1022.8 67.2539 25.2286 25.1488 -12.3951 361.154 81.378 

(0.002,0.0025,0.003,0.004) 3.9694 817.27 76.7695 00.0000 00.0000 00.0000 543.068 85.864 

(0.003,0.0035,0.004,0.005) 3.3923 698.77 84.9410 -14.5383 -14.4995 10.6441 724.982 88.284 

(0.004,0.0045,0.005,0.006) 3.0062 619.46 92.2224 -24.2650 -24.2039 20.1289 906.895 89.831 
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8   CONCLUSION 

      From the above described example and sensitivity analysis we found:  
• The optimal values of    decreases when    is increase of the constant deterioration and 

the Weibull deterioration for the three items as shown in Table 3 and Table 4 respectively of both 

the crisp and fuzzy environmental.   

• The minimum expected total cost decrease when    is decrease of the constant deterioration and 

the Weibull deterioration for the three items as shown in Table 3 and Table 4 respectively of both 

the crisp and fuzzy environmental. 

• The optimal values of    decrease when   are increases for the three items in 

both the crisp and fuzzy cases as shown in Table 5: Table 8, respectively.   

• The minimum expected total cost and the potential savings decrease when  decrease for 

the three items in both the crisp and fuzzy cases as shown in Table 5: Table 8, respectively. 

In other words, if , it gives the best value for the minimum expected total cost, we can 

conclude that the minimum expected total cost in fuzzy case is less than in the crisp case, which 

indicates that the fuzziness is very close to the actuality of life and gets minimum expected total cost 

less than the crisp case. The optimal values of   and   are all sensitive with respect to 

  and significant potential cost reductions are often present as compared to an analogous 

nondeteriorating model. This means that the parameter   plays an important role in the assumed 

inventory system in the sense that a small change in it can cause significant disruptions in optimal 

system decisions and should therefore be precisely controlled. 
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 لفة التدهورة في ظل القيود نموذج المخزون الاحتمالي بفترة سماح مساوية لفترة جدولة واحدة مع تغير تك

 4ياسمين يسرى مرسى  ,3عزة رمضان عمر,2هاله على فرجانى ,1هدى عبدالدايم على

 القاهرة -جامعة الأزهر -كلية العلوم بنات  -استاذ الرياضيات ورئيس قسم الرياضيات وعلوم الحاسب سابقا  1

قسدم  –المملكدة العربيدة السدعو ية -جددة -جامعة الملك عبدد العييدي -كلية العلوم -قسم الإحصاء  –استاذ مساعد الإحصاء الرياضى   2

 طنطا -جامعة طنطا -كلية العلوم -الرياضيات 

 القاهرة -جامعة الأزهر -كلية العلوم بنات  -قسم الرياضيات –مدرس الإحصاء الرياضى  3

 القاهرة -جامعة الأزهر -كلية العلوم بنات  -قسم الرياضيات -طالبة ماجستير 4

 

 الملخص العربي 
 . في هذا البحث تم وضع نموذج جر  للسلع المتدهورة مع تفاصيل غامضة وغير  قيقة حول التخيين المتاح

البحث:    المثلى    -1أهداف  الجدولة  الأمثل     -2فترة  المخزون  التدهور    -3مستوى  بسبب  المتوقعة  التكلفة  تقليل    -4تقليل 

متوسط التكلفة الإجمالية المتوقعة في ظل القيد باستخدام طريقة لاغرانج. تم تطوير هذا النموذج من أجل أن يكون معدل التدهور  

للتدهور المتوقع ، حيث يكون زمن التسليم مساويا لفترة زمنية    المستمر ثابتاً أو يتبع توزيع وايبل ذي المعلمتين بتكلفة متغيرة ومقيدة

 ه النماذج الاحتمالية في واحدة فقط، عدم السماح بالعجز وعندما يكون الطلب متغيرًا عشوائياً خلال أي جدولة زمنية. تمت دراسة هذ

ة. والفازي   ةالمحدد الأعداد حالتين:
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