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ABSTRACT 

The concept of double rational Chebyshev functions on the semi-infinite domain (  y,x0 ) and some 

of their properties are introduced in this work. Also, the definition of derivatives for double rational Chebyshev 

functions is improved.  This new definition is employed to deal with partial differential equations with variable 

coefficients derived on the interval [0, ) . The new definition with the spectral collocation method generates a 

new improved scheme. Numerical results are show that demonstrates the validity and applicability of the two 

techniques. The obtained numerical results are compared with the exact solution where it shown to be very 

attractive with good accuracy. 

Keywords: Double rational Chebyshev (DRC) functions, partial differential equations (PDEs), semi-

infinite domain, collocation method. 

INTRODUCTION 

The partial differential equations (PDEs) have an important role owing to their applications in real 

life phenomena and applied mathematics for instance, the wave equation, 

heat, Laplace, Helmholtz, Klein–Gordon, and Poisson's equations. The spectral methods are one of 

the most widely used methods to solve PDEs. Chebyshev polynomials are one of the most well-

known of those special functions. Chebyshev polynomials are orthogonal in the domain ( 1 1x   ) 

with respect to the weight function  
2

1

1
w x

x



and can be written the recurrence formulae as: 

                                nxTxTxxTxxTxT nnn .1),()(2)(,)(,1)( 1110    

As a notation, Chebyshev polynomials are defined in a closed interval ( 11  x ) in one 

variable [1-6] but many of studies have worked to extended to multi-variable cases, especially in two 

variables [7] and [8]. It is clear that if Chebyshev approach deals with problems defined on larger 

domains, especially, when it has unbounded domain, it causes a failure and weak approximation.  For 

this it is more suitable to generate a new set of basis for the interval [0, )  using a transformation that 

maps a finite domain into an semi-infinite interval this idea is introduced by Boyed in 1987 [9] where 

the new basis will get most of the good numerical characteristics of the Chebyshev polynomials called 

Rational Chebyshev (RC) functions that are orthogonal in L2(0,∞). Ramadan et al. [10-17], Parand 

and Razzaghi [18], Parand et al. [19], and Sezer et al. [20] are used RC functions to solve differential 

equations and its applications. 

All previous works and studies carried out for single variable using RC functions, we study the 

definition of RC functions in two-variables. In this paper, the definition of  double rational Chebyshev 

(DRC) functions on the semi-infinite domain (  y,x0 ), and some properties of  DRC functions 
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are obtained.  Also, the derivatives of RC functions in two variables are improved in this work. The 

DRC collocation technique is used for solving PDEs defined on the semi-infinite domains. 

2 Double rational Chebyshev functions[8] and [22] 

The RC functions Rn(x) of the first kind are functions in one variable x  of degree n, defined by 

the relation  

,
1

1
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The recurrence relation for DRC functions satisfies: 
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The weight function in the double form is:  
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It is the proper for choice for the  DRC functions to be orthogonal, with the orthogonality condition 
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The following relation is known as the product relation of DRC functions which can be 

represented as: 

 .),(),(),(),(
4

1
),(),(
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3. The partial derivatives of DRC functions [21]  

In the next propositions we improve the concept of partial derivatives of DRC functions in terms 

of itself. 

Proposition 3.1 

The derivative of DRC functions of order (r,s)th is given in terms of itself by the relation 

,)())(,(),(),( s
y

r
x

sr yxyx DDRR                                                    (3.1) 

where, xD and yD are )1)(1()1)(1(  jiji  which can be obtained by  ,21 DDD x  

where 
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s=0,1, 2, …, i,  

and the components of 2S are
kls  obtained from: 
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where I is identity matrix, 0 is zero matrix and   is square matrix. The dimensions for these three 

matrices are )1()1(  jj  which are components of the matrices xD  and yD . 

Proof: 

By using recurrence relation (2.3) we can demonstrate the partial derivatives of the DRC 

functions, first dealing with the variable x , and by using the multiplication relation we get 

  ,0),(,0 
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n for all n,                                                                               (3.4) 
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(3.6) 

Using the relations (3.4), (3.5) and (3.6) and by using multiplication relation (2.4) for m=0, 1, …, 

i,  the components of the block matrix of derivatives xD  can be shown as  the following:  
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Similar to the partial derivative of the variable x , we can show the partial derivative of the 

variable y , and from this we write the components of the matrix of derivatives yD  in form: 
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We assume: 

      0),(),(),(
)0,0(

,

)1,0(

,

)0,1(

,  yxRyxRyxR nmnmnm for im  and jn  . 

This assumption is based on truncating the matrices  xD  and yD  to be square and the matrix 

multiplication become possible. 

Thus, to find ),(, yxs)(r
R  using the equalities (3.7), (3.8) as 

,),(),()0,1(
xyxyx DRR   

   2)0,1()0,2( ),(),(),(),( xxxx yxyxyxyx DRDDRDRR  , 

   
2 3(3,0) (2,0)( , ) ( , ) ( , )R R D R D
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 Also,  
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s yxyx DRR ),(),(),0(  ,                                               (3.10) 

hence, from (3.9) and (3.10) we will have 
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y
r

x
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Proposition 3.2 



A NEW IMPROVED SCHEME FOR PARTIAL DIFFERENTIAL.. 27 

The modified partial derivatives of order (i, j)-th of the row vector y)(x,R  takes the following 

form: 
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where, xD and yD are given before in proposition 3.1 as (3.2) and (3.3), where ),(1 yxB , ),(2 yxB are 

)1)(1(1  nm  row vectors: 
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Before we prove our proposition we note that the two summations in (3.12) are the actual terms to 

get the equality sign that was truncated in (3.1) by our assumption: 

      0),(),(),(
)0,0(

,

)1,0(

,
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,  yxRyxRyxR nmnmnm ,  for  im     and    jn  . 

These added terms (two summations) will improve the obtained approximate solutions as will be 

shown in the numerical examples in section 6. 

Proof: 

The first partial derivatives of the y)(x,R can be expressed with equality sign by  
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consequently, to obtain the matrix ),(),( yxji
R , using (3.15) we get: 
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For this, by induction we get i-th partial derivative with respect to x as 
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The j-th  derivative of the relation (3.16) with respect to the variable y  takes the following relation: 
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finally, by induction we get (i, j)-th partial derivatives as 
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Similarly, if we begin with the partial derivative of the variable y then we find the (i, j)-th partial 

derivatives as 
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Then from (3.17) and (3.18) we find that 
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which ends the proof .                                                           

4 Function expansions 

A well-defined function ),( yxu where (  y,x0 ), can be expanded in terms of DRC 

functions as: 
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The expansion of ),( yxu  in (4.1) is truncated to mn, where mn,  in terms of  DRC 

functions which it be represented by: 
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where ),( yxR is )1)(1(1  nm  vector with elements ),(, yxR sr  and A is an unknown coefficient 

column vector are of the form: 
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5 Applications to PDEs 

To test the proposed definition we will use DRC technique to solve PDEs with the unknown 

function ),( yx ,and defined in the semi-infinite domain, which takes the form [22- 23] 
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invariable ),0[  ,especial case if one of them or more of  tends to infinity. We suppose that solution 

( , )u x y  to the analytical solution ),( yx  of Eq. (5.1) from (4.1) and its (r,s)th partial order 

derivatives which deduced in Eq. (3.12) as: 

, ,

0 0

( , ) ( , )

ji

r s r s

r s

u x y R x y
 

  ),( yxR ,                                      (5.3) 

and 

 

 

1
0, 1

2

0( , )

1
1,0

1

0

( , )( ) ( ) ( , )

( , )

( , )

R D D B D D

B D D

j
l jr s l i

x x y x

lr s

i
k i k j

x y

k

x y x y ( ) ( )

u x y

x y  ( ) ( )


  




  



 
 

 
  
 
 
 




.                          (5.4) 

The collocation method is used here to demonstrate the solution of eq. (5.1), the collocation points 

x and y will defined in the following: 
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where    y,x0 . 

If the variables x and y defined in finite interval ],0[ ax  and ],0[ by where a  and b any 

positive numbers we prefer using another collocation points    
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The DRC functions specified by convergent to x  and y  even if they tend to infinity, for this, 

doesn't make failure in the method in unbounded domain. Then, substituting the collocation points 

(5.5) into (5.1) we get 
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where s,rP is the block matrix which has the diagonal elements ),(,  yxp sr and the other elements are 

zeros and Q is the block vector with the components ),(  yxq . Bulging the collocation points (5.5) 

into partial derivatives of approximate solution ),( yxu  we get 
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Therefore, from Eq. (5.8), we get a system of the form 
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which is an )1()1(  ji system of linear algebraic equations with )1()1(  ji s,r unknowns. By 

using the collocation points (5.5) and substitute these points in the conditions (5.2) we get the 

fundamental matrices of the form 
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(5.10)
 

The fundamental matrix (5.9) for eq. (4.1) is transformed to a system of )1()1(  ji  

algebraic equations for the )1()1(  ji  unknown RC coefficients 

]..............[ 101111000100 ijiijj            

We can write the matrix (4.8) as: 

Y =Q     or     [Y; Q].                                                 (5.11) 

Also, we write the fundamental matrix of the conditions from (4.10) as follows 

   G,X  or
        GX ,;                                           (5.12) 

where X is a )1)(1(  jih matrix and G is a 1h matrix, so that h is the rank of the all row 

matrices as in (5.11) belong to the given conditions. 

Thus, systems (5.11) and (5.12) will be expressed as follows: 

,**
QY  or    **

QY ; .                                         (5.13) 

Hence, the equations (5.13) can be compacted by putting the vectors (5.12) on conditions to the 

equations (5.11). We use the generalized inverse [20] of 
*

Y for solving equations (5.13), and then we 

get the unknown s,r from the following: 

 geninv(
*

Y )
*

Q . 

In addition, (5.9) or (5.11) is derived a modified scheme, also, if ),(1 yxB and ),(2 yxB  are 

vanish then the regular scheme applied, and they will removed from all steps (5.8) - (5.10). 

6 Numerical examples 
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In this section, we apply the DRC collocation method is on some test examples to obtain its 

applicability and validity. All numerical examples are computed on the computer by 

MATHEMATICA 7.0.  

Problem 1 

Consider the PDEs of order two 
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and the conditions for this test example are:
 

,1)0,0(,1),(   yatandxatyx  

 

the fundamental matrix takes the form 
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Consider i=j=4, where, the approximate solution has the form 

0,0 0,0 0,1 0,1 4,4 4,4( , ) ( , ) ( , ) ( , ),u x y R x y R x y R x y       

For this, we compute the solve of  the augmented matrix of the fundamental relation and conditions, 

we will get the unknown  coefficients of RC functions as,  

,0

,0,0,0

,0,0,0

,0,0,1,0

,0

441404

431303

421202

41211101

401000
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...   

.... 

 ...  











 

Then, using the relation (2.2) we get the exact solution ,
)1)(1(

1
),(






yx

yxxy
yx  of problem (6.1). 

Problem 2    Consider Poisson’s equation  

           
2 x y

xx yy e ,                                              (6.2) 

with the Dirichlet boundary conditions   

1 1(0, ) , ( ,0) (1, ) , ( ,1) where 0 , 1.                       
y x y xy e x e y e x e x y             

 

The introduced two proposed techniques are using to solve Poisson’s equation (6.2). We see in 

table 1 the comparison between the exact (which is
yxeyx ),( ) and approximate solutions 

tabulated (the numerical results for i=j = 8).  In addition, table 2 compares the LL ,2 error norms of 

the modified and regular schemes with different values of i, j.  In addition, we illustrate in figures 1 

and 2 the absolute errors function for the two schemes at i=j = 8. Previous discussion shows that the 

grater i, j give good accuracy and the present technique which used the improved scheme gives us 

accuracy better than regular scheme.  
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Table. 1  Absolute errors for various values of i, j where y = 0.1 and  x  takes various values 

x  Exact solution 

Regular 

scheme  

i=j=8 

Absolut 

error 

Modified 

scheme  i=j=8 
Absolut error 

0 0.9048374180 0.9048371375 2.804×10-7 0.9048374183 3.651×10-10 

0.1 0.8187307530 0.8187312589 5.058×10-7 0.8187307591 6.152×10--9 

0.2 0.7408182206 0.7408204798 2.259×10-6 0.7408182238 3.211×10-9 

0.3 0.6703200460 0.6703153776 4.668×10-6 0.6703200391 6.971×10-9 

0.4 0.6065306597 0.6065197858 1.087×10-5 0.6065306485 1.127×10-8 

0.5 0.5488011924 0.5488011924 1.044×10-5 0.5488019874 7.952×10-7 

0.6 0.4965853037 0.4965803342 4.96×10-6 0.4965853166 1.296×10-8 

0.7 0.4493289641 0.4493302679 1.303×10-6 0.4493288701 9.478×10-8 

0.8 0.4065696597 0.4065746321 4.972×10-6 0.4065696389 2.087×10-8 

0.9 0.3678794411 0.3678840147 4.573×10-6 0.3678794401 1.725×10-9 

1 0.3328710836 0.3328715031 4.194×10-7 0.3328710844 8.791×10-10 

 

Table. 2  Comparing the 2L  and L  error norms 
 

 
2L regular 

scheme 

2L modified 

scheme   

L  Regular 

scheme   

L  modified 

scheme   

i=j=8 9.57079×10-9 7.8361×10-12 1.29247 510  1.4324×10-6 

i=j=10 4.37445×10-8 3.2145×10-13 1.77424 510  4.3217 710  

 

 

 

 
Figure.1 Error function for regular scheme at 

 i=j =8 

 
Figure.2 Error function for improved scheme at 

i=j =10 
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7. CONCLUSIONS  

In this work, a collocation technique for linear PDEs defined on semi-infinite domain under 

mixed conditions with variable coefficients is proposed. The technique is based on the approximating 

the solution function by the truncated DRC series. The definitions of the partial derivatives of DRC 

functions are introduced in a regular and an improved form. The regular and improved definitions 

generate two schemes with the collocation method. The PDEs and conditions are transformed to block 

matrix equations. This matrix equation is a system of linear algebraic equations with the unknown RC 

coefficients. Test examples are used to demonstrate the applicability, effectiveness and the accuracy 

of the proposed techniques. Also, the numerical results obtained that the improved scheme gives 

better accuracy than the regular scheme.  
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شبة  لحل معادلات تفاضلية جزئية ذات معاملات متغيرة فى مجال ةجديد ةمعدل اطروحة

 منتهى بواسطة دوال تشبشيف الكسرية ذات متغيرين

 
 3،   محمد عبد اللطيف رمضان2،  كمال رسلان 1محمود عبد الغنى نصار

 قسم الرياضيات، كلية العلوم،جامعة الأزهر، مدينة نصر ،القاهرة ، مصر - 2و  1

 قسم الرياضيات، كلية العلوم،جامعة المنوفية، شبين الكوم ،المنوفية ، مصر -3

 

صها. ض خصائفى هذا العمل سوف نقدم دوال تشبشيف الكسرية ذات متغيرين فى مجال شبة منتهى بالإضافة إلى بع 

دلات حل معالديل لتعريف الإشتقاق لدوال تشبشيف الكسرية . هذا التعريف الجديد سوف نستخدمه كذلك سوف نقترح تع

ريقة ق مع طتفاضلية جزئية خطية ذات معاملات متغيرة معرفة فى مجال شبة منتهى. تطبيق التعريف الجديد للإشتقا

ية العدد ف نقوم بعرض بعض الأمثلةتجميع النقاط الطيفية سوف تعطى مخطط جديد هو تطوير لمخطط سابق. كذلك سو

التام و  ع الحلملتوضيح مدى قابلية الطريقة المقترحة و صالحيتها. وايضا سوف نستخدم النتائج العددية و مقارنتها 

 المخطط الأصلى لتوضيح ان المخطط الجديد يعطى نتائج اكثر دقة.
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