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ABSTRACT

In this article, we will study the estimation of the unknown parameters for exponentiated gamma
distribution as well as a survival function, failure rate function and the coefficient of variation based on unified
hybrid censored data. In addition that, we will study maximum likelihood and Bayesian estimates. To calculate
the Bayes estimates of the model parameters will beused Markov chain Monte Carlo method (MCMC). Gibbs
within the Metropolis-Hasting algorithm has been applied to generate MCMC samples from the posterior
density function and calculate approximate confidence intervals for the unknown parameters, survival, failure
rate functions and coefficient of variation. All resultsobtained are based on the balanced-squared error loss,
balanced linear-exponential loss, and balanced general entropy loss functions. At the end of article, real data has
been used to determine how the estimation method can be used in practice.

Keywords: Exponentiated gamma distribution, Unified hybrid censored data, Bayesian estimation,
MCMC method.

1-INTRODUCTION

The gamma distribution is the most popular model for studying skewed data. Gupta et al.[1]
presented the exponentiated gamma (EG) distribution. For more details, see Bakoban[2] and Shawky
and Bakoban[3]. The EG distribution has the cumulative distribution function (cdf):

F(x8,y) = (1 - (1 +yx)e )8, (1)
Therefore, EG distribution has the probability density function (pdf):
f(x,8,y) = By xe7*[1 — (1 +yx)e™]° 1, )

where 8.v.x = 0 8 js the shape parameter and Y is the scale parameter.

The survival function (SF) or S(t) is given by

St =1-(1—(1+yt)e )", t>=0. 3)

The failure rate function h(t) is given by

By2te Y [1 — (1 + yt)e V)81
1-(1—-(1+yte s ()
The coefficient of variation (CV) is used in many areas of science such as biology, economics,

chemistry, psychology, and in engineering in reliability theory. The CV Based on the EG distribution
(8.v) is given by

h(t) =

Oy

“V=im ©)
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[
= |[E(X2)-[ECD]? . . .
where 7%~ (X% - [EX)] is the standard deviation of X, where ECX) and E(X?) are the first and
the second moments of the EG distribution (8. Y2, can be obtained by using binomial theorem and the
definition of gamma function we have

E(X®) = 8y’ J; Cxst e i [1 — (1 + yx)e ] Vax,

- EYZZ z:z{—u'J(
g=0 4
= q -1\ ,q [~
=gy )y = Z (—1}qyj( ) . j 1 xSt lg—(a+ Ly gy
D) 5],

0>1, (6)

g -1y = ,
)[ = xoHle(aY (1 4 yx) 94,
o

q

B—1
a (—1}q( . )(?]{I‘(s+j+2}}

AN
="|FZ Z {1_|_q]s+j+2

== ™

A sample is supposed to be censored if out of n items placed on a life test, only {(m < 1) of them
are essentially detected to fail. So there are several different censoring schemas as follows. Assume n
identical items are located on a life-testing experiment. Suppose that their lifetimes are independent
and identically distributed from EG distribution. Let the ordered failure times of these items be
denoted by X1xn: Xz - Xnin . Epstein[4] considered a hybrid censored scheme (HCS), which is a
combination of Type-I and Type-II censoring schemes. In Type-1 HCS, the life-testing experiment is
finished at a random timeTi = Min(x,n. T) \where 1=r=n and T (0.} are fixed. The
disadvantage of Type-I HCS is very few failures occurring until the pre-fixed time T . To overcome
this disadvantage, Childs et al.[5] proposed a new HCS, referred to as Type-Il hybrid censoring
scheme (Type-11 HCS), which guarantees fixed number of failures. In this case, the termination time
of the experiment is Tz = Max(x,n, T) where 1 =r=n and T € (0.22) are fixed. Although the
Type-11 HCS guarantees a specified number of failures, it has the disadvantage that it might take a
very long time to observe r failures and complete the life-test. Chandrasekar et al.[6] improved these
schemes of censored sampling by introducing two extensions of this type, named as generalized Type-
| HCS and generalized Type-11 HCS. In generalized Type-1 HCS, one fixes k.1 € (1,2, ...,1) and time
T e (0.2) where k<r<n_|f the k™ failure happens before time T, the termination time of the
experiment is T* = min(¢.,. T) | If the ™ failure happens after time T, the termination time in this
case is ¥n, see Saieed F. Ateya[7]. In generalized Type-1l HCS, one fixes I € (1,2,....,n) and
Ty. T, € (0,90) st Ty = Ta. If the '™ failure happens before time Ti, the termination time of the
experiment is T1; if the r™ failure happened between T1 and Tz, the the termination time in this case
is Xrn ; otherwise, the experiment is finished at Tz. Though these two new schemes of censored
sampling are improvements over the old ones, they still face some problems. For example, in the
generalized Type-1 HCS, because of only one pre-assigned time T, we cannot guarantee r failures. In
the generalized Type-11 HCS, there is a possibility of not observing any failure at all or observe very
few failures until the pre-fixed time Tz, and so it has the problem as the Type-1 HCS. To avoid the
drawbacks in these schemes, Balakrishnan et al.[8] introduced a mixture of generalized Type-1 HCS
and generalized Type-I1 HCS and named the unified hybrid censoring scheme (UHCS), which can be
described as follows, fix integers Lk € 1,2,...n \where k<r<mn and time points T1. Tz € (0,c0)
where Tt < Tz If the ¥™ failure happend before time Tz, the termination time of the experiment is
T* = min(max(%.,, T1). T2) . If the K™ failure occurs between T1 and Tz, the termination time is
T* = min(%,.,. T2) and if the K™ failure occurs after time Tz, the experiment is finished at . Under
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this censoring scheme, we can guarantee that the experiment would be finished at most in time Tz
with at least k failures and if not, we can guarantee exactly k failures. Therefore, under this UHCS,we
have the following six cases:

Case I: 0 < Xpn < Xpn < Ty < Tz jnthiscase T" = Ty,
Case II: 0 =¥y <= Ty <2y < Tz inthiscase T = Xn,
Case III: 0 =X =Ty =Ty < xpp inthiscase T =Tz,
Case IV: 0 =Ty < Xp <25 < T3 inthiscase T™ = Xrin |
Case V: 0 =Ty < ¥y, < To <y inthiscase T ™ = Ta,
Case VI: 0 =Ty = Tz < Hp < %pn inthiscase T~ = Hiem.

The article is organized as follows. In the next section, the maximum likelihood (ML) estimators
of the unkown parameters. In section (3), asymptotic confidence intervals (Cls) based on ML
estimator are obtained. In section (4), we will study Bayesian estimation based on balanced loss
functions. MCMC for estimating the posterior distribution of the unkown parameters, survival
function, failure rate function and CV in section (5). Finally, real data set has been analyzed in section
(6), and conclusion is given in section (7).

2 - Maximum likelihood estimation:

In this section we derive the ML estimations of the unkown parameters of EG distribution, S(t),
h(t), and CV under UHCS as follows. Let %1xn: X2 - Xmn be an UHCS observed from a life test
involving n units taken from a population with F(x) and f(x) given in Equations (1) and (2), then the

likelihood function of 8. Y | for six cases is given by

n!
(n— D)2, = f(x)][1 — F(c)]*D° ®)
Where D represent number of failures up to time c. And is given by

(d1,Ty) for I,
(r,x.,) forllandIV,
(d;, T,) forlllandV,
(& %en) for VL.

Lz 8;y) =

(D.c) =

(9)

where d1 and dz the number of failures that occur before T1 and Tz, respectively. Then the likelihood
function is given

n!
L{x; 8, =
(x8,) (n— D)2, 2 By2xe™Y5[1 — (1 +yx; Je ™i]8-1]
_ n-D
[1-(1—(1+yc)e¥)f]" (10)
the estimation of the parameters 8 and Y , can be obtained by taking the logarithm of (10) we get
D D
I(%,6,y) = InK + Diné + 2DIny + lﬂz = x — yz Sx+ (08— 1)
i=1 i=1

D
32 Inf1 — (1 +yx)e 5] + (n— D)inft — (1 — (1 + yo)e™) ¢,
=1 (11)

K= D
where  (n—D),
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Then differentiate (11) with respect to @ and ¥ and solve the result equations as follows.

D

D

3 + Z 7 Inf1 — (1 + yx; Je™ V]
i=1

3 (n—D)In[1 — (1 +yc)e™ve][1 — (1 + yc)e¥]® —0o

1—[1—(1+ycere]® (12)
D ° Yxle ™
ool s |
—— Yox+(B-1 Z -
Y Z % +( ) : 1—(1+yx)e ¥
i=1 i=1
vﬂcz(n _ D}E—yc ['l — (-]_ + "r"C}E_?':]LB_l} —0o
1-[1—(1+yc)e ] S (13)

There is no analytical solution for these equations in 8 and ¥ some numerical methods are used to
get Ymr and Bmw . To find the value of ML estimators of S(t), h(t) and CV replace & and ¥ by ¥mw
and BmL .

(WS ML) =1—(1—(1+y_MLte (—y_MLE) ) O _ML).@@I_ML (t)

Bpp — 1
D1={—1JQ(ML )(?)

q

(14)

where
3 - Bayesian estimation:
In this section, we find Bayesian estimates of the unknown parameters 8 and ¥ , in addition to

8(t), h(t) and CV based on balanced-squared error loss (BSEL), balanced linear-exponential

(BLINEX) loss, and the balanced general entropy(BGE) loss functions. We assume that @ and ¥ are
independently distribution as gamma 21-P1 and gamma 2z B2 priors, respectively. Then, the priors of

B andY are
g,(8) o (B2~ 1e7P®) 6 = 0,
g2(y) o (y*=teTv®z) y > 0.
where 1. 82. B3 and b2 = 0 The joint prior distribution for 8 and Y is
o(8,y) x go:-Lyaz-lg=(bio+bay) (15)
The posterior distribution is given by

E'{H|K} _ L{}Eh}ﬂ(“] _ L{§|&':}g(ﬁ} ,
- fi(x) [ Lix|a)gla) (16)

where 2(a) s the prior distribution for the parameter, L{Elu}, is the likelihood function, @} is the
marginal function and g'(a |§}, is the posterior distribution for the parameter.

From (15) and (16) we obtain the joint posterior density function as follows
gs(ﬂ "r"|X:} o ﬂD+aa_—11r,a5+2D—1E—Y[hz+EFz._5::5.!{1}

o= 8bu (8- EZ, Tin[1-(14vx)e V] [1—(1—(1+ye)e¥)e]D. (17
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Note that is not possible to calculate (17) analytically because it very difficult to get clear forms for
the marginal posterior distributions for each parameter. Then, we suggested method to approximate
(17), this method is Markov Chain Monte Carlo.

See Jozani et al.[9] presented a generalized loss function called the balanced loss function of the form

Lp_m,fn:\ (d}; P} = {UF(EJ ED] + (1 - m}p(d}, E} (18)

where 0 =@ =1 p jsan arbitrary loss function and 52 is a chosen prior estimator of ¢ and & is
an estimator. In BSEL loss function P{@,&) = (E—)? | then (18) take the form

Ly wso = @(E—£0)% + (1 — w)(f — )2
and the Bayes estimate in this case is
drs(x) = wio + (1 — w)E(d|x). (19)
If we choice
p(d,8) = e —alf - ) -1

we will get the BLINEX loss function where @ 0 | and the Bayes estimate of ¢ in this case is, see
Zellner[10]

$a1(2) = S infwe5 + (1 wE(e¢])].

(20)
And if we choice
g\ to
co=(8) -en(8)-
pl& b ) |
we will get the BGE loss function where @ # 0 | and the Bayes estimate of ¢ in this case is
-1
Pnc (%) = [(E0) ™= + (1 — WE($~*[x)] = 1)

4 - Confidence Interval

Consider a life-testing experiment in which n similar units are located on a life-test. Let
X <X < - <Xy denote the corresponding life-times from EG distribution. The Fisher information
matrix 1(8,¥) | is obtained by taking the expectation of minus of the second derivatives of the log-
likelihood of the parameters & and ¥ given the vector of observations.

821 ..
I = ‘E(W); W12 =00 =y

Take the approximate asymptotic variance-covariance matrix for the ML estimators.

(22)

-1

_ 8%l _ 8%l
[EwW] = aaﬂzz _agy ﬁr(ﬁﬂ) cov(ﬁﬁ)

~ dyas dy? IIE:‘F} _ |cov (1?, E) ﬁr{?}

To calculate the approximate confidence intervals (ACI)s for 8 and Y, we can use asymptotic
normality of the ML estimators. Therefore, (1 —2)100% confidence intervals (CI)s for parameters
B and ¥ become
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B+z ——\ and Ytz ——\,
( (Af2) [var E}) ( '-.MﬂJ‘HE[Y} )
,\.; 3

where Z(12) is the percentile of the standard normal distribution with right-tail probability #12 .

(23)

To construct the asymptotic Cls of the S(t), h(t) and CV, we need to find the variances of them, we

use the delta method. According to this method, the variance of ém, ﬁz.n. and 'ﬁm, can be
approximated, respectively by

62 = [?53.11,] W] [T‘%ML], EEML = [vﬁ}iL]T [AW] [T"rEML] and

62 = [Vl EWIIVEVy,)

then, the (1 —A)100% two sided Cls of 8 , Y , S(t), h(t) and CV, can be written as

Eiz '—"‘Jhiz’ﬂnﬁj
( ':Mﬂqdlﬁr[ﬂ}) (-Irll 'JLL]'-.'.'varw})

(ﬁm 2502 m;;__ﬁ)*(h(t} 2,0 |‘&L)’(w(t} tz
5 B0

a2y |52
JEm |2 &

N ﬁﬁ'ﬂ) (24)
where ¥, Vi and V€Vaw are the gradient of S ,Em and CVar with respectto @ and Y .
5 - MCMC Method

Equation (17) is complicated and no closed form inferences appear possible. So, we use the
MCMC method, see Chen and Shao[11]. To generate samples from the posterior distributions this
samples can be drawn and then compute the Bayes estimates of & and ¥ in addition to St} k(t) and

CV and also to construct associated Cls.

From (17), the posterior density function of ¥ given 8 is

gilyle.x) = yer+D-1gb* 2R ) (25)
Similary, the full posterior conditional distribution for & is
23 (6ly.x) = _IF_DED+E‘__1E—BI:|._+[H—1}EF:‘_E:E In[1—( 14v; J V]
[t -1 = (1 +ye ], (26)

It can be seen that 81(Y|8.%) s a gamma density with shape parameter (D + a2} and scale parameter

D
(bz +Z xi)

i=1 . Also, g3(8lv.%) cannot be reduced analytically to well known distributions so we
can not take sample directly by standard methods, and therefore we use the Metropolis-Hastings
method with normal proposal distribution. MCMC algorithm used in this article to calculate the

Bayesian estimate of ¥ and 8 , S(t), h(t) and CV and find the corresponding Cls. Also, used to draw
samples from the posterior density functions(17)

Algorithm
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1) Start with initial (8. Y} N=burn-in.
2)Setl=1
3) Generate Y from Gamma (D +a 2.b 2+ ¥ (i=1)"D=x1),

4) Using Metropolis-Hastings, see Metropolis et al.[12] generate 8 from 2:(8lv.x) with the

N{ﬂ"l_ﬂa a?) proposal distribution. where a’ s the variance of Y obtained using variance-covariance
matrix.

5) Compute S(t), h(t) and CV as
- . .10
s t=1- (-]_ — ('l + ..r,l._l]t) E:_Y[ .'1:)

A, , a1
EI-_I':I'I',I'I-_I':I tE_Y[: Mt [1 —_ {-l + 1rl.|_|.:|t) E_Y( .'t]

1- (1 —(1+v) e—yil}t)am

CrA () = Vi@ (/Y ((D"2) (g = 0)"»=T_[ = 0)"q= D1 T + 9)/((1 + DG + ) — B (@)Y (D) I_(q

Bl —1
D1 = {—ﬂEJ( )(?)

q

Rl (t) =

where
6)Setl=1+1
7) Repeat steps (3 — 6N times.

8) By arranging Y, 8% st(p) @, ang VP 1=M+1,.,N i ascending orders, the
approximate (1 —¥)100% Cisford =¥ , 8 S(t),n(t) or CV is

(d}m ¢({N_H}[1_§} ) (27)

Then the approximate Bayes estimates of ¢ =Y , 8 | S(t), h(t) and CV based on BSEL, BLINEX and
BGE loss functions

N

- -~ 1—w r
bps = whyy + N_M Z ¢’I'-l:|s
l=M#1 (28)
1 1 -
- — —ar —w i — il
q}BL = ?fﬂ. we 2¥ML + N—M Z i e Eq}( ,
I=M+1 (29)
-1
N a
bpc = m(d?m_ + Z (d}ll
l M+1 (30)

6 - Application to real life data

A real data set is taken from Kumar and Umesh[13], these data represent the average monthly
rainfall obtained from the Information System for Management of Water Resources from the State of
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So Paulo, including a period of 56 years from 1947 to 2003, for the month of November., which is
represented as;
Table 1: real data set.

0.2 08 11 13 14 17 18 19 21 21 22 25 26 2.8
2.8 29 29 29 29 31 32 33 35 35 35 37 38 38
3.9 4 41 41 46 47 48 5 52 52 54 54 54 54
55 55 62 62 67 69 73 73 74 87 88 99 108 241

We plot the empirical SF and the fitted SF in the Fig[1] they show thatEG distribution (2 Y ) provide
a reasonable fit to the above real data.

1.0}

0.8}

0.6}

0.4}

Survival function

0.2}

0.0 ) ) —

X

Figure 1: The empirical and fitted survival functions.

Now, we consider the case when the data are censored. We generate six UHCD sets from the
uncensored data set as

Case|: TL=8T2=10k=40,r =45 inthiscase D =5Lc=T1=8
Case I1'T1=5.6,T2=10k=40.r =45 jnthiscase D = 45.c =X, = 6.2
Case III-T1 = 5.8.T2 = 7.k = 40,r = 50 inthiscase D = 48.c =T2=7
Case IV:T1 =4T2 =67k =35r=47 inthiscase D =47.¢ =%, = 6.7
Case V:T1=2T2=3.k=15+=25 inthiscase D = 19.c=T2 =3 _
Case VI:T1=2T2 =3k =25r=30 inthiscase D = 25.¢ =3n = 3.5

In these cases, we used ML and Bayesian estimation to estimate the parameters Y- € in addition to
S(t), h(t) and CV. We used MCMC where M=11000 MCMC sample and N=1000 values as "burn-in".

used non-informative gamma priors for Y and © when (3; = 38; =by =b; =0},

We computed the 95% ACIs based on the MCMC samples in Table (2). In Table (3) represent
some characteristics of ¥-8 in addition to S(t), h(t) and CV. Also, we can determine the values of
y.8.5(t = 0.4),h(t = 0.4) and CV | based on the three types of balanced loss functions with various
value of a and @ , result are given in Table (4). The histogram of Y. 8.5(t), h(e) and CV are displayed
in Fig[2]. Also, plot the MCMC output of Y. 8.5(t) | n(t), and CV in Fig[3].
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Figure 3: Simulation number of ¥: 8,5(t), he) and cv generated by MCMC method based on balanced loss
function for Case I with non-informative priors.

It is clear this Figure for Y. 8.h{t) and CV have a long tail to the right, then they are said to be
skewed to the right and have positive skewnes but, S(t) have a long tail to the left, then they are said
to be skewed to the left and have negative skewnes.
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Table 2: The 93% confidence interval of ML estimates and MCMC for Y- 8.5,k and CV for six cases of

UHCS based on the observed Fisher information matrix.

MLE MCMC
Cases Par Lower Upper Length Lower Upper Length
y 0.39982 0.6845 0.28468 0.19619 0.34299 0.14683
0 0.83958 2.05042 1.21084 0.45913 0.96201 0.50378
S 0.9897 1.0031 0.0134 0.91159 0.9934 0.08184
Case | h 4.00183 9.42279 5.42095 2.21697 4.6295 2.4125
CcVv 0.50876 0.70434 0.19558 0.7194 1.0536 0.3341
y 0.38006 0.68152 0.30146 0.21177 0.38315 0.17138
0 0.79624 2.02224 1.226 0.48616 1.05026 0.5641
Case Il S 0.98875 1.00341 0.01466 0.91769 0.99502 0.07733
h 3.81221 9.30072 5.48851 2.34653 5.02775 2.68122
CcV 0.509 0.71591 0.20691 0.69175 1.02118 0.32943
y 0.38927 0.67925 0.28999 0.20466 0.35889 0.15423
0 0.8164 2.02353 1.20713 0.47825 1.00463 0.52638
Case 111 S 0.98909 1.00327 0.01418 0.91975 0.99442 0.07467
h 3.89941 9.30702 5.40761 2.31154 4.83319 2.52165
CcV 0.51014 0.71117 0.20103 0.70563 1.03036 0.32473
y 0.3844 0.6774 0.2930 0.2063 0.3645 0.1581
0 0.8059 2.0133 1.2073 0.4905 1.0167 0.5262
Case IV S 0.9888 1.0033 0.01452 0.9224 0.9946 0.0722
h 3.8535 9.263 5.4095 2.3648 4.8803 2.5155
cVv 0.5105 0.7142 0.2036 0.7018 1.0162 0.3144
y 0.23002 0.7521 0.5221 0.29725 0.7229 0.4256
©} 0.5219 2.0629 1.5409 0.77714 1.9367 1.1595
Case V S 0.9841 1.0055 0.0214 0.9596 0.99969 0.04003
h 2.6338 9.4581 6.8243 3.64663 9.0134 5.3668
cVv 0.4817 0.7857 0.3093 0.54413 0.7975 0.2533
y 0.28522 0.72379 0.43857 0.27302 0.60084 0.32782
Case VI 0} 0.61335 2.04885 1.4355 0.71181 1.64676 0.93495
S 0.9858 1.0048 0.019 0.95765 0.9993 0.04165
h 3.02603 9.40482 6.3788 3.36758 7.73641 4.36883
cV 0.49217 0.76049 0.26832 0.57738 0.83375 0.25636

Table 3: The characteristics for @ | ¥ 5.k and CV for six cases of UHCS with non informative prior.

Cases Par Mean Median Mode SD MS Ske
v 0.2648 0.2632 0.2599 0.0372 0.2675 0.2709
0 0.6878 0.6807 0.6686 0.1299 0.6989 0.4568
Case | S 0.9672 0.9722 0.983 0.022 0.9671 -1.7871
h 3.318 3.285 3.2324 0.6234 3.3708 0.4494
CV 0.8623 0.8532 0.833 0.0865 0.8676 0.6634
v 0.2914 0.2889 0.2839 0.0435 0.2947 0.3359
0 0.7535 0.745 0.7279 0.1423 0.7668 0.2913
Case Il S 0.9724 0.9776 0.9878 0.0204 0.9727 -2.3654
h 3.6217 3.587 3.5177 0.6792 3.6848 0.2831
CV 0.8236 0.8146 0.7967 0.0832 0.8278 0.9485
v 0.2754 0.273 0.2683 0.0394 0.2782 0.3244
0 0.7144 0.7066 0.6909 0.1321 0.7265 0.4369
Case Il S 0.9698 0.9744 0.9836 0.0198 0.97 -1.7132
h 3.4415 3.4061 3.3353 0.6321 3.499 0.4289
CV 0.8452 0.8369 0.8202 0.0819 0.8492 0.6563
v 0.2804 0.278 0.275 0.0409 0.2834 0.2705
] 0.7267 0.7163 0.6953 0.1363 0.7394 0.526
Case IV S 0.9708 0.975 0.9833 0.019 0.971 -1.6039
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h 3.4981 3.4484 3.3489 0.6515 3.5583 0.5176
CV 0.8381 0.8311 0.817 0.081 0.842 0.5713
Y 0.4874 0.4803 0.466 0.11 0.4996 0.4542
] 1.3005 1.2744 1.2221 0.2987 1.3342 0.4308
Case V S 0.9905 0.9948 1.002 0.0112 0.9912 -3.7747
h 6.0822 5.9558 5.711 1.3747 6.2356 0.4201
CcV 0.645 0.6374 0.622 0.0647 0.6483 0.9491
¥ 0.4224 0.4168 0.4057 0.0839 0.4307 0.3651
] 1.1374 1.1222 1.0918 0.2496 1.1645 0.4215
Case VI S 0.9886 0.9925 1.0001 0.0132 0.9887 -4.2001
h 5.3681 5.2968 5.1541 1.1643 5.492 0.4129
CcV 0.6806 0.6719 0.6545 0.0651 0.6837 0.874

Table 4: Estimation of Y- 8.5,k and CV for MCMC method for six cases of UHCS with non informative
prior.

BLINEX BGE
Cases Par MLE [0 BSEL ai=-3 a>=0.25 as=10 ai=-3 a:=0.25 a3=10
¥ 0.54216 0.2 0.32028 0.34307 0.31861 0.27894 0.3624  0.2995 0.24027

0.4 0.3757 0.40513 0.37341 0.3035 0.42285 0.34459 0.24939
0.6 0.43122 0.45732 0.42887 0.34134 0.46955 0.39853 0.30406
1 0.54216 0.54216 0.54216 0.54216 0.54216 0.54216 0.54216
() 1.445 0.2 0.83835 1.03161 0.82536  0.63659 0.96254 0.77335 0.78268
0.4 0.99001 1.19119 0.97151 0.66521 1.12482 0.89614 0.91074
0.6 1.14167 1.29866 1.1232 0.0705 1.25029 1.0443  1.06098
1 1.445 1.445 1.445 1.445 1.445 1.445 1.445
S 0.9964 0.2 0.97276 0.9734 097258 0.9693 0.97317 0.97231 0.97236
0.4 0.97867 0.9793 097852 0.9757 0.97908 0.97826 0.97831

Casel 0.6 0.98458 0.9851 0.98447 0.9821  0.98492 0.98426 0.9843
1 0.9964  0.9964 0.9964 0.9964 0.9964 0.9964 0.9964

h 6.71231 0.2 3.99256 6.17639 3.75417  2.1754 452761 3.70727 3.74866

0.4 4.672 6.40709 4.31428 2.20411 5.25619 4.2659  4.3295

0.6 535244 6.54219 4.9671 2.24476 5.82473 4.9356 5.00556

1 6.71231 6.71231 6.71231  6.71231 6.71231 6.71231 6.71231

Ccv 0.60655 0.2 0.81194 0.83613 0.80987  0.73225 0.83163 0.79858 0.74006

0.4 0.76059 0.79183 0.7580 0.68347 0.78685 0.7441  0.66454

0.6 0.70924 0.74072 0.70692  0.65083 0.73629 0.69433 0.63034

1 0.60655 0.60655 0.60655  0.60655 0.60655 0.60655 0.60655

Y 0.53079 0.2 0.33857 0.35623 0.33725 0.30205 0.3704 0.32183 0.26228

0.4 0.38663 0.40915 0.38476  0.32749 0.42265 0.36262 0.26992

0.6 0.43468 0.45481 0.43285 0.3617 0.46444 0.41009 0.28108

1 0.53079 0.53079 0.53079 0.53079 0.53079 0.53079 0.53079

() 1.40924 0.2 0.88835 1.0347 0.87804 0.69031 0.98184 0.83605 0.605

0.4 1.01857 1.17405 1.00438 0.71905 1.12123 0.94668 0.62265

0.6 1.1488  1.27202 1.13483 0.75955 1.23258 1.07624 0.64841

1 140924 1.40924 1.40924  1.40924 1.40924 1.40924 1.40924

Case S 0.99608 0.2 097779 0.97834 097774 09756 0.97817 0.97754 0.97522

I 0.4 0.98236 0.98286 0.98232  0.98034 0.98271 0.98213 0.98
0.6 0.98693 0.98733  0.9869 0.98532 0.98721 0.98675 0.98505
1 0.99608 0.99608 0.99608  0.99608 0.99608 0.99608 0.99608
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h 6.55646 0.2 4.22677 6.02397 4.02985  2.33547 4.63028 3.99682 2.91848
0.4 480919 6.25253 452789  2.36424 5.25255 4.49792 3.00362
0.6 5.39162 6.38685 5.09689  2.40478 5.75451 5.08007 3.12785
1 6.55646 6.55646 6.55646  6.55646 6.55646 6.55646 6.55646
CVv 0.61246 0.2 0.78136 0.80077 0.77978  0.72379 0.79738 0.7711  0.70389
0.4 0.73913 0.76271 0.73729 0.6825 0.75925 0.72706 0.66735
0.6 0.69691 0.71974 0.69524  0.65337 0.71684 0.68609 0.62159
1 0.61246 0.61246 0.61246 0.61246 0.61246 0.61246 0.61246
BLINEX BGE
Par MIE o BSEL a1=-3 a>=0.25 as=10 ai=-3 a=0.25 az=10
Cases
¥ 0.53079 0.2 0.33857 0.35623 0.33725  0.30205 0.3704 0.3218 0.26228
0.4 0.38663 0.40915 0.38476  0.32749 0.42265 0.36262 0.26992
0.6 0.43468 0.45481 0.43285 0.3617  0.46444 0.41009 0.28108
1 0.53079 0.53079 0.53079  0.53079 0.53079 0.53079 0.53079
0 1.41997 0.2 0.85313 1.02319 0.84161  0.65756 0.96263 0.7947 0.55516
0.4 099484 1.17398 0.97855  0.68631 1.11463 0.91183 0.57136
0.6 1.13655 1.27743 1.12035 0.72682 1.23367 1.05124 0.595
1 1.41997 1.41997 1.41997  1.41997 1.41997 1.41997 1.41997
S 0.99618 0.2 097466 0.97531 0.97461  0.97212 0.97512 0.97437 0.97167
Case 0.4 0.98004 0.98065 0.97999  0.97762 0.98047 0.97976 0.9772
11 0.6 0.98542 0.98591 0.98538  0.98343 0.98576 0.9852  0.98309
1 0.99618 0.99618 0.99618  0.99618 0.99618 0.99618 0.99618
h 6.60322 0.2 4.06246 6.06918 3.84677 2.08899 453478 3.80627 2.69447
0.4 4.69765 6.29871 437859 211776 5.21612 4.33807 2.7731
0.6 5.33284 6.43335 499211  2.15831 5.7548  4.96606 2.88782
1 6.60322 6.60322 6.60322  6.60322 6.60322 6.60322 6.60322
CV 0.61066 0.2 0.7976  0.81918 0.79581 0.73 0.81518 0.78604 0.72481
0.4 0.75087 0.77798 0.74871  0.6846  0.77373 0.73685 0.64889
0.6 0.70413 0.73096 0.70216  0.65349 0.7273  0.69144 0.62401
1 0.61066 0.61066 0.61066 0.61066 0.61066 0.61066 0.61066
Y 0.5309 0.2 0.3305 0.3494 0.32911  0.2928  0.3652 0.3126 0.2520
0.4 0.3806  0.4048 0.3786 0.3185  0.4197 0.3546 0.2594
0.6 0.4307 0.4524 0.42848  0.34925 0.46469 0.40192 0.26638
1 0.5309  0.5309 0.5309 0.5309  0.5309 0.5309 0.5309
0 1.4096 0.2 0.86331 1.02371 0.84343  0.66042 0.96354 0.79689 0.58832
0.4 0.9999 1.17423 0.97996  0.68917 1.11513 0.9137 0.60548
0.6 1.1364 1.27755 1.12132  0.72969 1.23394 1.05272 0.63053
Case 1 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096
v S 0.99609 0.2 09758 0.97557 0.9749 0.9726  0.97538 0.97467 0.9722
0.4 0.9809  0.98084 0.98021  0.97799 0.98066 0.97999 0.97762
0.6 0.9859  0.98603 0.98552  0.98369 0.98589 0.98535 0.98339
1 0.99609 0.99609 0.99609  0.99609 0.99609 0.99609 0.99609
h 655832 0.2 41101 6.06778 3.85611 2.32734 453911 3.81621 2.84456
04 47221 6.29818 438659  2.35611 5.21858 4.34683 2.92756
0.6 5.3342 6.43312 499833 2.39666 5.75614 4.97298 3.0486
1 65583 4655832 6.5583 65583 65583 6K.5583 6.5583
CV 0.60596 0.2 0.7929 0.80436 0.78337  0.72217 0.80127 0.77421 0.71004
0.4 0.7478 0.76471 0.73827 0.6784  0.76143 0.72717 0.63368
0.6 0.7026  0.7197 0.69368  0.64805 0.71691 0.68365 0.66818
1 0.60596 0.60596 0.60596 0.60596 0.60596 0.60596 0.60596
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Continue Table (4)
BLINEX BGE

Cases Par MIE [0} BSEL ai=-3 a>=0.25 as=10 ai=-3 a,=0.25 as=10
Y 0.46407 0.2 0.47427 0.48834 0.47317 0.43429 0.49288 0.46261 0.32822
0.4 0.47172 0.48244 0.47089 0.44094  0.486 0.46297 0.33744
0.6 0.46917 0.47643 0.46861 0.44807 0.47891 0.46334 0.35069
1 0.46407 0.46407 0.46407 0.46407 0.46407 0.46407 0.46407
0 1.23507 0.2 127973 1.40017 1.27148 1.00807 1.33181 1.24745 0.93483
0.4 1.26857 1.36592 1.26235 1.03346 1.30895 1.24434 0.96016
0.6 1.2574 1.32774  1.25323 1.06756 1.28526 1.24124 0.99595
1 1.23507 1.23507 1.23507 1.23507 1.23507 1.23507 1.23507
Case V S 0.9943 0.2 0.99207 0.9922 0.99206 0.99155 0.99216 0.99201 0.99147
0.4 0.99263 0.99272 0.99262 0.99223 0.99269 0.99258 0.99217
0.6 0.99319 0.99325 0.99318 0.99292 0.99323 0.99316 0.99288

1 0.9943 0.9943 0.9943 0.9943 0.9943 0.9943 0.9943
h 579924 0.2 599682 9.29689 5.82733 3.16766 6.23369  5.84977 4.41527
0.4 594743 9.201 5.82029 3.19642 6.13078 5.83709 453434
0.6 5.89803 9.06585 5.81326 3.23697 6.0243 5.82444 4.70226
1 5.79924 579924 5.79924 5.79924 5.79924  5.79924 5.79924
CV 0.64555 0.2 0.64639 0.65131 0.64601 0.63313 0.65125 0.64856 0.64722
0.4 0.64618 0.64988  0.6459 0.6361 0.65084 0.64706 0.64703
0.6 0.64597 0.64844 0.64578 0.63915 0.64942 0.64656 0.64674
1 0.64555 0.64555 0.64555 0.64555 0.64555 0.64555 0.64555
y 0.5045 0.2 0.43883 0.44881 0.43799 0.4051 0.45353  0.42866 0.33399
0.4 0.45525 0.46363 0.45451 0.42223 0.46733  0.4462 0.34355
0.6 0.47167 0.47782 0.47111 0.44293 0.48037 0.46465 0.35738

1 0.5045 0.5045 0.5045 0.5045 0.5045 0.5045 0.5045
0 1.3311 0.2 1.17615 1.26205 1.16917 0.90777 1.22187 1.14439 0.69244
0.4 121489 1.2807 1.20904 0.93606 1.25099 1.18782 0.71261
0.6 1.25362 1.29836  1.24931 0.97565 1.27882 1.23334 0.74203

1 1.3311 1.3311 1.3311 1.3311 1.3311 1.3311 1.3311
Case VI S 0.9953 0.2 0.98998 0.99019 0.98996 0.98906 0.99012 0.98988 0.98886
0.4 0.99131 0.99147 0.9913 0.99058 0.99142 0.99123 0.99043
0.6 0.99264 0.99276 0.99263 0.99213 0.99272  0.9925 0.99203

1 0.9953 0.9953 0.9953 0.9953 0.9953 0.9953 0.9953

h 6.21542 0.2 553755 7.73399 5.38766 2.3103 5.74646  5.39301 3.3192
0.4 5.70702 7.63926 5.5791 2.33907 5.87082 5.58518 3.41586
0.6 5.87649 7.50642 5.78017 2.37962 5.99012 5.78599 3.55676
1 6.21542 6.21542 6.21542 6.21542 6.21542 6.21542 6.21542
CV 062633 0.2 0.66976 0.67603 0.66928 0.65415 0.67569 0.66638 0.65706
0.4 0.6589 0.66428  0.6585 0.64644 0.66403 0.65608 0.63353
0.6 0.64804 0.65211 0.64775 0.63928 0.65195 0.64597 0.62994
1 0.62633 0.62633 0.62633 0.62633 0.62633 0.62633 0.62633

Obviously from Table (4) when @ goes to one all results of Bayes estimates under BSE,
BLINEX and BGE loss functions for 8.v.5(t) | h(t) and CV are closed to corresponding ML estimates

and equal to ML estimates when @ =1 | |f the shape parameter (a) increase the value of 8.¥. 5(t),
h(t) and CV are decreased in BLINEX and BGE loss functions. Obviously from Table (4), the Bayes
estimates under BLINEX loss function is approximately the Bayes estimates under BSE loss function

and there for almost symmetric for @ = 0.25 |
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7 - CONCLUSION

In this paper, we considered the Bayes estimation of the unknown parameters of the
exponentiated gamma distribution when the data is collected under the unified hybrid censored data.
The MLEs and the Cls based on the observed Fisher information matrix have been obtained. Under
balanced loss functions we can obtain Bayes estimate so, we can using MCMC technique to
computing the Bayes estimation under three different balanced losses functions. We have applied the
developed techniques on a real data set to demonstrate how the proposed method can be used in
practice.
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