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ABSTRACT 

In this article, we will study the estimation of the unknown parameters for exponentiated gamma 

distribution as well as a survival function, failure rate function and the coefficient of variation based on unified 

hybrid censored data. In addition that, we will study maximum likelihood and Bayesian estimates. To calculate 

the Bayes estimates of the model parameters  will beused Markov chain Monte Carlo method (MCMC). Gibbs 

within the Metropolis-Hasting algorithm has been applied to generate MCMC samples from the posterior 

density function and calculate approximate confidence intervals for the unknown parameters, survival, failure 

rate functions and coefficient of variation. All resultsobtained are based on the balanced-squared error loss, 

balanced linear-exponential loss, and balanced general entropy loss functions. At the end of article, real data has 

been used to determine how the estimation method can be used in practice. 

Keywords: Exponentiated gamma distribution, Unified hybrid censored data, Bayesian estimation, 

MCMC method.  

 

1 - INTRODUCTION 

The gamma distribution is the most popular model for studying skewed data. Gupta et al.[1] 

presented the exponentiated gamma (EG) distribution. For more details, see Bakoban[2] and Shawky 

and Bakoban[3]. The EG distribution has the cumulative distribution function (cdf):  

     (1) 

Therefore, EG distribution has the probability density function (pdf):  

    (2) 

where .  is the shape parameter and  is the scale parameter. 

The survival function (SF) or S(t) is given by 

 

    (3) 

The failure rate function h(t) is given by  

 

 .   (4) 

The coefficient of variation (CV) is used in many areas of science such as biology, economics, 

chemistry, psychology, and in engineering in reliability theory. The CV Based on the EG distribution 

 is given by  

      (5) 
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where  is the standard deviation of X,where  and  are the first and 

the second moments of the EG distribution , can be obtained by using binomial theorem and the 

definition of gamma function we have  

  θ ≥ 1,  (6) 

  

  

   (7) 

A sample is supposed to be censored if out of n items placed on a life test, only  of them 

are essentially detected to fail. So there are several different censoring schemas as follows. Assume n 

identical items are located on a life-testing experiment. Suppose that their lifetimes are independent 

and identically distributed from EG distribution. Let the ordered failure times of these items be 

denoted by . Epstein[4] considered a hybrid censored scheme (HCS), which is a 

combination of Type-I and Type-II censoring schemes. In Type-I HCS, the life-testing experiment is 

finished at a random time , where  and  are fixed. The 

disadvantage of Type-I HCS is very few failures occurring until the pre-fixed time . To overcome 

this disadvantage, Childs et al.[5] proposed a new HCS, referred to as Type-II hybrid censoring 

scheme (Type-II HCS), which guarantees fixed number of failures. In this case, the termination time 

of the experiment is , where  and  are fixed. Although the 

Type-II HCS guarantees a specified number of failures, it has the disadvantage that it might take a 

very long time to observe r failures and complete the life-test. Chandrasekar et al.[6] improved these 

schemes of censored sampling by introducing two extensions of this type, named as generalized Type-

I HCS and generalized Type-II HCS. In generalized Type-I HCS, one fixes  and time 

 where . If the  failure happens before time T, the termination time of the 

experiment is . If the  failure happens after time T, the termination time in this 

case is , see Saieed F. Ateya[7]. In generalized Type-II HCS, one fixes  and 

 s.t . If the  failure happens before time , the termination time of the 

experiment is ; if the  failure happened between  and , the the termination time in this case 

is ; otherwise, the experiment is finished at . Though these two new schemes of censored 

sampling are improvements over the old ones, they still face some problems. For example, in the 

generalized Type-I HCS, because of only one pre-assigned time T, we cannot guarantee r failures. In 

the generalized Type-II HCS, there is a possibility of not observing any failure at all or observe very 

few failures until the pre-fixed time , and so it has the problem as the Type-I HCS. To avoid the 

drawbacks in these schemes, Balakrishnan et al.[8] introduced a mixture of generalized Type-I HCS 

and generalized Type-II HCS and named the unified hybrid censoring scheme (UHCS), which can be 

described as follows, fix integers  where  and time points  

where . If the  failure happend before time , the termination time of the experiment is 

. If the  failure occurs between  and , the termination time is 

 and if the  failure occurs after time , the experiment is finished at . Under 
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this censoring scheme, we can guarantee that the experiment would be finished at most in time  

with at least k failures and if not, we can guarantee exactly k failures. Therefore, under this UHCS,we 

have the following six cases: 

Case I:  in this case , 

Case II:  in this case , 

Case III:  in this case , 

Case IV:   in this case , 

Case V:   in this case , 

Case VI:   in this case . 

The article is organized as follows. In the next section, the maximum likelihood (ML) estimators 

of the unkown parameters. In section (3), asymptotic confidence intervals (CIs) based on ML 

estimator are obtained. In section (4), we will study Bayesian estimation based on balanced loss 

functions. MCMC for estimating the posterior distribution of the unkown parameters, survival 

function, failure rate function and CV in section (5). Finally, real data set has been analyzed in section 

(6), and conclusion is given in section (7). 

2 - Maximum likelihood estimation: 

In this section we derive the ML estimations of the unkown parameters of EG distribution, S(t), 

h(t), and CV under UHCS as follows. Let  be an UHCS observed from a life test 

involving n units taken from a population with F(x) and f(x) given in Equations (1) and (2), then the 

likelihood function of , for six cases is given by  

   (8) 

Where D represent number of failures up to time c. And is given by  

   (9) 

where  and  the number of failures that occur before  and , respectively. Then the likelihood 

function is given  

   (10) 

the estimation of the parameters  and , can be obtained by taking the logarithm of (10) we get 

  (11) 

 where .  
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 Then differentiate (11) with respect to  and  and solve the result equations as follows. 

   (12) 

   (13) 

There is no analytical solution for these equations in  and  some numerical methods are used to 

get  and . To find the value of ML estimators of S(t), h(t) and CV replace  and  by  

and .  

       (14) 

 where .  

3 - Bayesian estimation: 

In this section, we find Bayesian estimates of the unknown parameters  and , in addition to 

,  and CV based on balanced-squared error loss (BSEL), balanced linear-exponential 

(BLINEX) loss, and the balanced general entropy(BGE) loss functions. We assume that  and  are 

independently distribution as gamma  and gamma  priors, respectively. Then, the priors of 

 and  are 

  

  

where  and . The joint prior distribution for  and  is  

     (15) 

The posterior distribution is given by  

    (16) 

where , is the prior distribution for the parameter, , is the likelihood function, , is the 

marginal function and , is the posterior distribution for the parameter. 

From (15) and (16) we obtain the joint posterior density function as follows  

  (17) 
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Note that is not possible to calculate (17) analytically because it very difficult to get clear forms for 

the marginal posterior distributions for each parameter. Then, we suggested method to approximate 

(17), this method is Markov Chain Monte Carlo. 

See Jozani et al.[9] presented a generalized loss function called the balanced loss function of the form  

    (18) 

where ,  is an arbitrary loss function and  is a chosen prior estimator of  and  is 

an estimator. In BSEL loss function , then (18) take the form  

,  

and the Bayes estimate in this case is  

     (19) 

If we choice  

,  

we will get the BLINEX loss function where , and the Bayes estimate of  in this case is, see 

Zellner[10] 

    (20) 

And if we choice  

,  

we will get the BGE loss function where , and the Bayes estimate of  in this case is 

    (21) 

4 - Confidence Interval 

Consider a life-testing experiment in which n similar units are located on a life-test. Let 

 denote the corresponding life-times from EG distribution. The Fisher information 

matrix , is obtained by taking the expectation of minus of the second derivatives of the log-

likelihood of the parameters  and  given the vector of observations. 

    (22) 

Take the approximate asymptotic variance-covariance matrix for the ML estimators. 

 = . 

To calculate the approximate confidence intervals (ACI)s for  and , we can use asymptotic 

normality of the ML estimators. Therefore,  confidence intervals (CI)s for parameters 

 and  become 
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    (23) 

where  is the percentile of the standard normal distribution with right-tail probability . 

To construct the asymptotic CIs of the S(t), h(t) and CV, we need to find the variances of them, we 

use the delta method. According to this method, the variance of ,  and , can be 

approximated, respectively by 

,  and  

, 

then, the  two sided CIs of , , S(t), h(t) and CV, can be written as 

 

 (24) 

where ,  and  are the gradient of ,  and  with respect to  and .  

5 - MCMC Method 

Equation (17) is complicated and no closed form inferences appear possible. So, we use the 

MCMC method, see Chen and Shao[11]. To generate samples from the posterior distributions this 

samples can be drawn and then compute the Bayes estimates of  and  in addition to ,  and 

 and also to construct associated Cls. 

From (17), the posterior density function of  given  is  

    (25) 

Similary, the full posterior conditional distribution for  is 

   (26) 

It can be seen that  is a gamma density with shape parameter  and scale parameter 

. Also,  cannot be reduced analytically to well known distributions so we 

can not take sample directly by standard methods, and therefore we use the Metropolis-Hastings 

method with normal proposal distribution. MCMC algorithm used in this article to calculate the 

Bayesian estimate of  and , S(t), h(t) and CV and find the corresponding CIs. Also, used to draw 

samples from the posterior density functions(17)  

Algorithm 
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1) Start with initial , N=burn-in. 

2) Set . 

3) Generate  from Gamma ). 

4) Using Metropolis-Hastings, see Metropolis et al.[12] generate  from  with the 

 proposal distribution. where  is the variance of  obtained using variance-covariance 

matrix. 

5) Compute S(t), h(t) and CV as  

 

 

 

where  

6) Set . 

7) Repeat steps  times. 

8) By arranging , , , , and ,  in ascending orders, the 

approximate  CIs for , , S(t),h(t) or CV is 

 

     (27) 

Then the approximate Bayes estimates of , , S(t), h(t) and CV based on BSEL, BLINEX and 

BGE loss functions  

     (28) 

    (29) 

    (30) 

6 - Application to real life data 

A real data set is taken from Kumar and Umesh[13], these data represent the average monthly 

rainfall obtained from the Information System for Management of Water Resources from the State of 
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So Paulo, including a period of 56 years from 1947 to 2003, for the month of November., which is 

represented as; 

Table 1: real data set. 

 

 

We plot the empirical SF and the fitted SF in the Fig[1] they show thatEG distribution ( , ) provide 

a reasonable fit to the above real data. 

 

Figure 1:   The empirical and fitted survival functions. 

Now, we consider the case when the data are censored. We generate six UHCD sets from the 

uncensored data set as 

Case I:   in this case . 

Case II:  in this case . 

Case III:  in this case . 

Case IV:  in this case . 

Case V:  in this case . 

Case VI:  in this case . 

In these cases, we used ML and Bayesian estimation to estimate the parameters  in addition to 

S(t), h(t) and CV. We used MCMC where M=11000 MCMC sample and N=1000 values as "burn-in". 

used non-informative gamma priors for  and  when .  

We computed the  ACIs based on the MCMC samples in Table (2). In Table (3) represent 

some characteristics of  in addition to S(t), h(t) and CV. Also, we can determine the values of 

, and , based on the three types of balanced loss functions with various 

value of a and , result are given in Table (4). The histogram of  and CV are displayed 

in Fig[2]. Also, plot the MCMC output of , h(t), and CV in Fig[3].  

0.2 0.8 1.1 1.3 1.4 1.7 1.8 1.9 2.1 2.1 2.2 2.5 2.6  2.8 

2.8 2.9 2.9 2.9 2.9 3.1 3.2 3.3 3.5 3.5 3.5 3.7 3.8 3.8 

3.9 4 4.1 4.1 4.6 4.7 4.8  5 5.2 5.2 5.4 5.4 5.4 5.4 

5.5 5.5 6.2 6.2 6.7 6.9 7.3 7.3 7.4 8.7 8.8 9.9 10.8 24.1 
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Figure 2: Histogram of  and CV generated by MCMC method for case I. 

 

Figure 3:  Simulation number of  and CV generated by MCMC method based on balanced loss 

function for Case I with non-informative priors. 

It is clear this Figure for  and CV have a long tail to the right, then they are said to be 

skewed to the right and have positive skewnes but, S(t) have a long tail to the left, then they are said 

to be skewed to the left and have negative skewnes. 
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Table 2: The  confidence interval of ML estimates and MCMC for  and CV for six cases of 

UHCS based on the observed Fisher information matrix. 

   MLE   MCMC  

Cases Par Lower Upper Length Lower Upper Length 

 

 

 

Case I 

 0.39982 0.6845 0.28468 0.19619 0.34299 0.14683 

Θ 0.83958 2.05042 1.21084 0.45913  0.50378 

S 0.9897 1.0031 0.0134 0.91159 0.9934 0.08184 

h 4.00183 9.42279 5.42095 2.21697 4.6295 2.4125 

CV 0.50876 0.70434 0.19558 0.7194 1.0536 0.3341 

 

 

Case II 

 0.38006 0.68152 0.30146 0.21177 0.38315 0.17138 

Θ 0.79624 2.02224 1.226 0.48616 1.05026 0.5641 

S 0.98875 1.00341 0.01466 0.91769 0.99502 0.07733 

h 3.81221 9.30072 5.48851 2.34653 5.02775 2.68122 

CV 0.509 0.71591 0.20691 0.69175 1.02118 0.32943 

 

 

Case III 

 0.38927 0.67925 0.28999 0.20466 0.35889 0.15423 

Θ 0.8164 2.02353 1.20713 0.47825 1.00463 0.52638 

S 0.98909 1.00327 0.01418 0.91975 0.99442 0.07467 

h 3.89941 9.30702 5.40761 2.31154 4.83319 2.52165 

CV 0.51014 0.71117 0.20103 0.70563 1.03036 0.32473 

 

 

Case IV 

 0.3844 0.6774 0.2930 0.2063 0.3645 0.1581 

Θ 0.8059 2.0133 1.2073 0.4905 1.0167 0.5262 

S 0.9888 1.0033 0.01452 0.9224 0.9946 0.0722 

h 3.8535 9.263 5.4095 2.3648 4.8803 2.5155 

CV 0.5105 0.7142 0.2036 0.7018 1.0162 0.3144 

 

 

Case V 

 0.23002 0.7521 0.5221 0.29725 0.7229 0.4256 

Θ 0.5219 2.0629 1.5409 0.77714 1.9367 1.1595 

S 0.9841 1.0055 0.0214 0.9596 0.99969 0.04003 

h 2.6338 9.4581 6.8243 3.64663 9.0134 5.3668 

CV 0.4817 0.7857 0.3093 0.54413 0.7975 0.2533 

 

Case VI 
 0.28522 0.72379 0.43857 0.27302 0.60084 0.32782 

Θ 0.61335 2.04885 1.4355 0.71181 1.64676 0.93495 

S 0.9858 1.0048 0.019 0.95765 0.9993 0.04165 

h 3.02603 9.40482 6.3788 3.36758 7.73641 4.36883 

CV 0.49217 0.76049 0.26832 0.57738 0.83375 0.25636 

 

Table 3:  The characteristics for , ,  and CV for six cases of UHCS with non informative prior.   

Cases  Par  Mean  Median  Mode  SD  MS Ske 

   0.2648  0.2632  0.2599  0.0372  0.2675  0.2709 

 Θ  0.6878  0.6807  0.6686  0.1299  0.6989  0.4568 

Case I  S  0.9672  0.9722  0.983  0.022  0.9671  -1.7871 

 h  3.318  3.285 3.2324  0.6234  3.3708  0.4494 

 CV  0.8623  0.8532  0.833  0.0865  0.8676  0.6634 

   0.2914  0.2889  0.2839  0.0435  0.2947  0.3359 

 Θ  0.7535  0.745  0.7279  0.1423  0.7668  0.2913 

Case II S  0.9724  0.9776  0.9878  0.0204  0.9727  -2.3654 

 h  3.6217  3.587  3.5177  0.6792  3.6848  0.2831 

 CV  0.8236  0.8146  0.7967  0.0832  0.8278  0.9485 

   0.2754  0.273  0.2683  0.0394  0.2782  0.3244 

 Θ  0.7144  0.7066  0.6909  0.1321  0.7265  0.4369 

Case III  S  0.9698  0.9744  0.9836  0.0198  0.97  -1.7132 

 h  3.4415  3.4061  3.3353  0.6321  3.499  0.4289 

 CV  0.8452  0.8369  0.8202  0.0819  0.8492  0.6563 

   0.2804  0.278  0.275  0.0409  0.2834  0.2705 

 Θ  0.7267  0.7163  0.6953  0.1363  0.7394  0.526 

Case IV S  0.9708  0.975  0.9833  0.019  0.971  -1.6039 
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 h  3.4981  3.4484  3.3489  0.6515  3.5583  0.5176 

 CV  0.8381  0.8311  0.817  0.081  0.842  0.5713 

   0.4874  0.4803  0.466  0.11  0.4996  0.4542 

 Θ  1.3005  1.2744  1.2221  0.2987  1.3342 0.4308 

Case V  S  0.9905  0.9948  1.002  0.0112  0.9912  -3.7747 

 h  6.0822  5.9558  5.711  1.3747  6.2356  0.4201 

 CV  0.645  0.6374  0.622  0.0647  0.6483  0.9491 

   0.4224  0.4168  0.4057  0.0839  0.4307  0.3651 

 Θ 1.1374  1.1222  1.0918  0.2496  1.1645  0.4215 

Case VI S  0.9886  0.9925  1.0001  0.0132  0.9887  -4.2001 

 h  5.3681  5.2968  5.1541  1.1643  5.492  0.4129 

 CV  0.6806  0.6719  0.6545  0.0651  0.6837  0.874 

 

Table 4:  Estimation of  and CV for MCMC method for six cases of UHCS with non informative 

prior.  

      BLINEX   BGE  

Cases  Par MLE ω  BSEL  a1=-3 a2=0.25 a3=10 a1=-3 a2=0.25 a3=10 

 

 

 

 

 

 

 

 

 

 

 

 

Case I 

 0.54216 0.2 0.32028 0.34307 0.31861 0.27894 0.3624 0.2995 0.24027 

  0.4 0.3757 0.40513 0.37341 0.3035 0.42285 0.34459 0.24939 

  0.6 0.43122 0.45732 0.42887 0.34134 0.46955 0.39853 0.30406 

  1 0.54216 0.54216 0.54216 0.54216 0.54216 0.54216 0.54216 

Θ 1.445 0.2 0.83835 1.03161 0.82536 0.63659 0.96254 0.77335 0.78268 

  0.4 0.99001 1.19119 0.97151 0.66521 1.12482 0.89614 0.91074 

  0.6 1.14167 1.29866  1.1232 0.0705 1.25029  1.0443 1.06098 

  1 1.445  1.445  1.445  1.445  1.445  1.445  1.445 

S 0.9964 0.2 0.97276 0.9734 0.97258 0.9693 0.97317 0.97231 0.97236 

  0.4 0.97867 0.9793 0.97852 0.9757 0.97908 0.97826 0.97831 

  0.6 0.98458 0.9851 0.98447 0.9821 0.98492 0.98426 0.9843 

  1 0.9964 0.9964  0.9964 0.9964 0.9964 0.9964 0.9964 

h 6.71231 0.2 3.99256 6.17639 3.75417 2.1754 4.52761 3.70727 3.74866 

  0.4  4.672 6.40709 4.31428 2.20411 5.25619  4.2659 4.3295 

  0.6 5.35244 6.54219  4.9671 2.24476 5.82473 4.9356 5.00556 

  1 6.71231 6.71231 6.71231 6.71231 6.71231 6.71231 6.71231 

CV 0.60655 0.2 0.81194 0.83613 0.80987 0.73225 0.83163 0.79858 0.74006 

  0.4 0.76059 0.79183 0.7580 0.68347 0.78685  0.7441 0.66454 

  0.6 0.70924 0.74072 0.70692 0.65083 0.73629 0.69433 0.63034 

  1 0.60655 0.60655 0.60655 0.60655 0.60655 0.60655 0.60655 

 

 

 

 

 

 

 

 

 

 

Case 

II 

 0.53079 0.2 0.33857 0.35623 0.33725 0.30205 0.3704 0.32183 0.26228 

  0.4 0.38663 0.40915 0.38476 0.32749 0.42265 0.36262 0.26992 

  0.6 0.43468 0.45481 0.43285 0.3617 0.46444 0.41009 0.28108 

  1 0.53079 0.53079 0.53079 0.53079 0.53079 0.53079 0.53079 

Θ 1.40924 0.2 0.88835 1.0347 0.87804 0.69031 0.98184 0.83605 0.605 

  0.4 1.01857 1.17405 1.00438 0.71905 1.12123 0.94668 0.62265 

  0.6 1.1488 1.27202 1.13483 0.75955 1.23258 1.07624 0.64841 

  1 1.40924 1.40924 1.40924 1.40924 1.40924 1.40924 1.40924 

S 0.99608 0.2 0.97779 0.97834 0.97774 0.9756 0.97817 0.97754 0.97522 

  0.4 0.98236 0.98286 0.98232 0.98034 0.98271 0.98213 0.98 

  0.6 0.98693 0.98733  0.9869 0.98532 0.98721 0.98675 0.98505 

  1 0.99608 0.99608 0.99608 0.99608 0.99608 0.99608 0.99608 
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h 6.55646 0.2 4.22677 6.02397 4.02985 2.33547 4.63028 3.99682 2.91848 

  0.4 4.80919 6.25253 4.52789 2.36424 5.25255 4.49792 3.00362 

  0.6 5.39162 6.38685 5.09689 2.40478 5.75451 5.08007 3.12785 

  1 6.55646 6.55646 6.55646 6.55646 6.55646 6.55646 6.55646 

CV 0.61246 0.2 0.78136 0.80077 0.77978 0.72379 0.79738  0.7711 0.70389 

  0.4 0.73913 0.76271 0.73729 0.6825 0.75925 0.72706 0.66735 

  0.6 0.69691 0.71974 0.69524 0.65337 0.71684 0.68609 0.62159 

  1 0.61246 0.61246 0.61246 0.61246 0.61246 0.61246 0.61246 
 

      BLINEX   BGE  

 

Cases  

Par MlE ω  BSEL  a1=-3 a2=0.25 a3=10 a1=-3 a2=0.25 a3=10 

 

 

 

 

 

 

 

 

 

Case 

III  

 0.53079 0.2 0.33857 0.35623 0.33725 0.30205 0.3704  0.3218 0.26228 

  0.4 0.38663 0.40915 0.38476 0.32749 0.42265 0.36262 0.26992 

  0.6 0.43468 0.45481 0.43285 0.3617 0.46444 0.41009 0.28108 

  1 0.53079 0.53079 0.53079 0.53079 0.53079 0.53079 0.53079 

θ 1.41997 0.2 0.85313 1.02319 0.84161 0.65756 0.96263  0.7947 0.55516 

  0.4 0.99484 1.17398 0.97855 0.68631 1.11463 0.91183 0.57136 

  0.6 1.13655 1.27743 1.12035 0.72682 1.23367 1.05124  0.595 

  1 1.41997 1.41997 1.41997 1.41997 1.41997 1.41997 1.41997 

S 0.99618 0.2 0.97466 0.97531 0.97461 0.97212 0.97512 0.97437 0.97167 

  0.4 0.98004 0.98065 0.97999 0.97762 0.98047 0.97976 0.9772 

  0.6 0.98542 0.98591 0.98538 0.98343 0.98576  0.9852 0.98309 

  1 0.99618 0.99618 0.99618 0.99618 0.99618 0.99618 0.99618 

h 6.60322 0.2 4.06246 6.06918 3.84677 2.08899 4.53478 3.80627 2.69447 

  0.4 4.69765 6.29871 4.37859 2.11776 5.21612 4.33807 2.7731 

  0.6 5.33284 6.43335 4.99211 2.15831 5.7548 4.96606 2.88782 

  1 6.60322 6.60322 6.60322 6.60322 6.60322 6.60322 6.60322 

CV 0.61066 0.2 0.7976 0.81918 0.79581  0.73 0.81518 0.78604 0.72481 

  0.4 0.75087 0.77798 0.74871 0.6846 0.77373 0.73685 0.64889 

  0.6 0.70413 0.73096 0.70216 0.65349 0.7273 0.69144 0.62401 

  1 0.61066 0.61066 0.61066 0.61066 0.61066 0.61066 0.61066 

 

 

 

 

 

 

 

Case 

IV  

 0.5309 0.2 0.3305 0.3494 0.32911 0.2928 0.3652 0.3126 0.2520 

  0.4 0.3806 0.4048 0.3786 0.3185 0.4197 0.3546 0.2594 

  0.6 0.4307 0.4524 0.42848 0.34925 0.46469 0.40192 0.26638 

  1 0.5309 0.5309 0.5309 0.5309 0.5309 0.5309 0.5309 

θ 1.4096 0.2 0.86331 1.02371 0.84343 0.66042 0.96354 0.79689 0.58832 

  0.4 0.9999 1.17423 0.97996 0.68917 1.11513  0.9137 0.60548 

  0.6 1.1364 1.27755 1.12132 0.72969 1.23394 1.05272 0.63053 

  1 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096 1.4096 

S 0.99609 0.2 0.9758 0.97557  0.9749 0.9726 0.97538 0.97467 0.9722 

  0.4 0.9809 0.98084 0.98021 0.97799 0.98066 0.97999 0.97762 

  0.6 0.9859 0.98603 0.98552 0.98369 0.98589 0.98535 0.98339 

  1  0.99609 0.99609 0.99609 0.99609 0.99609 0.99609 0.99609 

h  0.2 4.1101 6.06778 3.85611 2.32734 4.53911 3.81621 2.84456 

  0.4 4.7221 6.29818 4.38659 2.35611 5.21858 4.34683 2.92756 

  0.6 5.3342 6.43312 4.99833 2.39666 5.75614 4.97298 3.0486 

  1        
CV 0.60596 0.2 0.7929 0.80436 0.78337 0.72217 0.80127 0.77421 0.71004 

  0.4 0.7478 0.76471 0.73827 0.6784 0.76143 0.72717 0.63368 

  0.6 0.7026 0.7197 0.69368 0.64805 0.71691 0.68365 0.66818 

  1 0.60596 0.60596 0.60596 0.60596 0.60596 0.60596 0.60596 
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Continue Table (4) 

 

      BLINEX   BGE  

 Cases  Par MlE ω  BSEL  a1=-3 a2=0.25 a3=10 a1=-3 a2=0.25 a3=10 

  0.46407 0.2 0.47427 0.48834 0.47317 0.43429 0.49288 0.46261 0.32822 

   0.4 0.47172 0.48244 0.47089 0.44094  0.486 0.46297 0.33744 

   0.6 0.46917 0.47643 0.46861 0.44807 0.47891 0.46334 0.35069 

   1 0.46407 0.46407 0.46407 0.46407 0.46407 0.46407 0.46407 

 θ 1.23507 0.2 1.27973 1.40017 1.27148 1.00807 1.33181 1.24745 0.93483 

   0.4 1.26857 1.36592 1.26235 1.03346 1.30895 1.24434 0.96016 

   0.6 1.2574 1.32774 1.25323 1.06756 1.28526 1.24124 0.99595 

   1 1.23507 1.23507 1.23507 1.23507 1.23507 1.23507 1.23507 

Case V S 0.9943 0.2 0.99207 0.9922 0.99206 0.99155 0.99216 0.99201 0.99147 

   0.4 0.99263 0.99272 0.99262 0.99223 0.99269 0.99258 0.99217 

   0.6 0.99319 0.99325 0.99318 0.99292 0.99323 0.99316 0.99288 

   1 0.9943 0.9943  0.9943 0.9943 0.9943  0.9943 0.9943 

 h 5.79924 0.2 5.99682 9.29689 5.82733 3.16766 6.23369 5.84977 4.41527 

   0.4 5.94743  9.201 5.82029 3.19642 6.13078 5.83709 4.53434 

   0.6 5.89803 9.06585 5.81326 3.23697 6.0243 5.82444 4.70226 

   1 5.79924 5.79924 5.79924 5.79924 5.79924 5.79924 5.79924 

 CV 0.64555 0.2 0.64639 0.65131 0.64601 0.63313 0.65125 0.64856 0.64722 

   0.4 0.64618 0.64988  0.6459 0.6361 0.65084 0.64706 0.64703 

   0.6 0.64597 0.64844 0.64578 0.63915 0.64942 0.64656 0.64674 

   1 0.64555 0.64555 0.64555 0.64555 0.64555 0.64555 0.64555 

  0.5045 0.2 0.43883 0.44881 0.43799 0.4051 0.45353 0.42866 0.33399 

   0.4 0.45525 0.46363 0.45451 0.42223 0.46733  0.4462 0.34355 

   0.6 0.47167 0.47782 0.47111 0.44293 0.48037 0.46465 0.35738 

   1 0.5045 0.5045  0.5045 0.5045 0.5045  0.5045 0.5045 

 θ 1.3311 0.2 1.17615 1.26205 1.16917 0.90777 1.22187 1.14439 0.69244 

   0.4 1.21489 1.2807 1.20904 0.93606 1.25099 1.18782 0.71261 

   0.6 1.25362 1.29836 1.24931 0.97565 1.27882 1.23334 0.74203 

   1 1.3311 1.3311  1.3311 1.3311 1.3311  1.3311 1.3311 

Case VI S 0.9953 0.2 0.98998 0.99019 0.98996 0.98906 0.99012 0.98988 0.98886 

   0.4 0.99131 0.99147  0.9913 0.99058 0.99142 0.99123 0.99043 

   0.6 0.99264 0.99276 0.99263 0.99213 0.99272  0.9925 0.99203 

   1 0.9953 0.9953  0.9953 0.9953 0.9953  0.9953 0.9953 

 h 6.21542 0.2 5.53755 7.73399 5.38766 2.3103 5.74646 5.39301 3.3192 

   0.4 5.70702 7.63926 5.5791 2.33907 5.87082 5.58518 3.41586 

   0.6 5.87649 7.50642 5.78017 2.37962 5.99012 5.78599 3.55676 

   1 6.21542 6.21542 6.21542 6.21542 6.21542 6.21542 6.21542 

 CV 0.62633 0.2 0.66976 0.67603 0.66928 0.65415 0.67569 0.66638 0.65706 

   0.4 0.6589 0.66428  0.6585 0.64644 0.66403 0.65608 0.63353 

   0.6 0.64804 0.65211 0.64775 0.63928 0.65195 0.64597 0.62994 

   1 0.62633 0.62633 0.62633 0.62633 0.62633 0.62633 0.62633 

 

Obviously from Table (4) when  goes to one all results of Bayes estimates under BSE, 

BLINEX and BGE loss functions for , h(t) and CV are closed to corresponding ML estimates 

and equal to ML estimates when . If the shape parameter (a) increase the value of , 

h(t) and CV are decreased in BLINEX and BGE loss functions. Obviously from Table (4), the Bayes 

estimates under BLINEX loss function is approximately the Bayes estimates under BSE loss function 

and there for almost symmetric for .  
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7 - CONCLUSION 

In this paper, we considered the Bayes estimation of the unknown parameters of the 

exponentiated gamma distribution when the data is collected under the unified hybrid censored data. 

The MLEs and the CIs based on the observed Fisher information matrix have been obtained. Under 

balanced loss functions we can obtain Bayes estimate so, we can using MCMC technique to 

computing the Bayes estimation under three different balanced losses functions. We have applied the 

developed techniques on a real data set to demonstrate how the proposed method can be used in 

practice. 
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لملخص العربيا  

د مييم الا اتييات في هذا المقال تم دراسة تقدير المعلمات المجهوله لتوزيع جاما الاسي باستخدام هجيي م مو يي 

المراقاه بالاضافه الي  ساب ق م داله الاقاء ومعدل الفشل ومعامييل الالاييت و م وتييم دراسيية  يريييل الق مييه العل ييا 

والتقدير الاايزي لهذا التوزيع ولايجاد التقدير الاايزي للمعلمييات سييوو تسييتخدم يريقييه سلسييله مييار وو مييوتتي 

جهوله ودالة الاقاء علي ق د الح اه ومعدل الفشييل ومعامييل الالاييت و م  ارلو وتم  ساب  فترات الثقه للمعلمات الم

تستند جم ع النتائج التي تييم الحلييول عل هييا خليية الخسييارة الترب ع يية المتوازتيية  ي والخسييارة ا سيي ة المتوازتيية ي 

د   ف يية اسييتخدام ووظائف فقدان الاتتروب ا العامة المتوازتييةم فييي تهاييية المقييال ي اسييتخدمنا  ب اتييات  ق ق يية لتحدييي 

   يريقة التقدير في الممارسة العمل ةم 

. 
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