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ABSTRACT

A several types of forces are acting on the satellite. These forces are classified into conservative and non-
conservative force. The main concern in the present research work is to studding the effect of conservative
forces on the satellite orbital motion and represent this effect on satellite ground track. Where the ground tracks
are the locus of points formed by the points on the Earth directly below a satellite as it travels in orbit. A
mathematical model and a program code is designed using Matlab package to calculate the perturbed ground
track under J, and luni-solar forces. Whereas the J, and Luni-Solar are a conservative forces, the secular
variation is presented only in RAAN and @ . Otherwise the remaining orbital element is varies periodically.

The perturbed ground track is calculated under the effect of J, and luni-solar forces. The perturbed position
vectors for a satellite are converted to its corresponding latitudes and longitudes. The satellite’s position in one

revolution is displayed to represent where the satellite at the time desired.

Keywords: Satellite, oblateness, earth’s gravitational force, luni-Solar force, ground Track.

1. INTRODUCTION

The studying and modeling perturbations
are key disciplines in astrodynamics. We must
consider the forces acting on the satellite. There
are two types of forces causing the perturbative
effects on a satellite:

1. Conservative forces (for example
central-body and third-body gravitational).

2. Non-conservative forces (for example
solar-radiation pressure, thrust, and drag).

Propagation concerns with the
determination of the motion of a body over
time. According to Newton’s laws, the motion
of a body depends on its initial state (i.e., its
position and orientation at some known time)
and the forces that act upon it over time. There
are three types of orbit propagators:

1. Numerical Integration Propagators
2. Analytic Propagators
3. Semi-Analytic Propagators

Ground tracks are the locus of points
formed by the points on the Earth directly
below a satellite as it travels in orbit. To
determine ground tracks for a satellite's orbit,
we combine both of Kepler's routines with the
conversion of a position vector to its sub-

satellite point.  This particular combination
helps us in determine satellite orbit position and
location relative to a ground site.

2. The equation of motion with perturbation

The Equation of motion for two-body of
relative motion is

3 Mo
I‘:—FI‘, (21)

where

4 is Earth’s gravitational parameter, u =
398600.4418 km3/sec2, and

T is satellite position vector;

the perturbations that effects on the satellite can

we classified into two types:

1. Gravitational perturbation: such as
oblateness of Earth, N-body attraction and
others.

2. Non-gravitational perturbation: such as
atmospheric drag, solar radiation pressure, and
others, then

ap = QGravitational aNon—gravitationaI, (22)

where
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ap is the acceleration due to the summation
of perturbing forces, then the acceleration due
to perturbation is given by

oo

RS

r+a,. (2.3)

3. The Earth's gravitational force

The net result of the irregular shape of the
Earth is to produce a wvariation in the
gravitational acceleration that predicted using a
point of mass distribution. An accurate model
of the Earth can be obtained through the use of
a series of spherical harmonics; which
effectively represent a gravitational body as a
series of mass centers, some more dominant
than others, the most dominant term being that
of a perfectly uniform sphere. The gravitational
potential of the Earth U is defined by [11], [22]
and [44].

U =€i IZ[RT@] R ,[sin ¢]{Clym[cos mA]+S, ,[sin m/l]}’
o (3.1)
where

Re is Earth's mean equatorial radius, Re =
6378.165 km,

¢ is Geocentric latitude of the satellite,

A is Geocentric longitude of the satellite,

Pim is the associated Legendre polynomial of
degree | and order m, and

Cim & Sim are Geopotential coefficients.

Equation (3.1) describes the gravitational
attraction  resulting from the irregular
distribution of the Earth's mass using a
potential function. There are three types of
spherical harmonic.

Zonal harmonic represented by | where

77 LERNENS
v AN
R

J,=-C,, ¥V, =0. (3.2)

The potential on longitude vanishes and the
field is symmetrical about the polar axis. These

are bands of latitude. For any P, [sing] there
are | circles of latitude which P, =0, and

hence (I+1) zones [11]. The strongest
perturbation due to the Earth's shape is Ja.
Where

J2= 0.0010826269, Js; = - 0.000025323,

Js=-0.000016204. (3.3)
Sectorial harmonic represent bands of
longitude where 1 = m. The polynomials

R.n[sing]l, V,=290". The sphere is divided
into 21 sectors.

Tesseral harmonic which [ # m # 0, the
sphere is divided into a checkerboard array.
The number of circles of latitude which

B n[sing]=0 is equal to (I — m), whereas
C, n[cosmA]+S, [sinmA] vanish along 2m

meridians of longitude. These zero lines
represent the center of the Ilatitude and
longitude bands. Figures (3.1, 3.2 and 3.3) are
the various types of harmonic coefficients.

Now from equation (3.1), we use the
gradient to determine the accelerations
resulting from the central body. The gradient
operation produces acceleration components
along each axis. This is actually a special case
for J,. [3 and 10]

M Rg i ;
R, :?(Tj P,,[sing]C, . (3.4)

Using equation (3.2)

//¢7‘
fif)

e
ERm

Ia

Figure (Error! No text of specified style in document.-1): Zonal harmonics
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2
R, = —“TJZ(R—;%J P, [sing]. (3.5)

Determine  the associated

Legendre

2 2
R, - bRk, [— (1) +1J (31
o, 2r r

Figure (3.2): Tesseral harmonics

function for P, ,[sing] [11].

P, o[sing] = 0.5[3sin’(¢) —1],

by a substitute in equation (3.5), then

(3.6)

3udy (R Y[ .o, 1
R,=—"-2| —2||sin“g—=|. 3.7
? 2r (rj{ ¢ 3} 3.7)
Let
sing=r,/r. (3.8)
Substituting in equation (3.7)
3ud,R2(r Y ud,R?
R =—"TF"29 k| 29 3.9
2 2r’ (rj 2r’ (3.9)
Differentiate equation (3.9) to get
R, __3ud,REE (_ 5(2ﬁ)J+#JzRé (_ 3(2f.)j
o 2r 2r’ 2 2r°
(3.10)

Simplify to

Similarly, we obtain to @ and @ the
or, o,

accelerations component due to J; are
2 2
a =6R2 =_3J2R5@ I 1_5(r|2()  (312)
o, 2r r
a, =2 _ 1 50| (319
'S 2r° rzo )

. :8R2:_3J2R§)rk 3_5(rk2) 314)
< or, 2r r2

oR, _ 3J,R2m

4. The Luni-Solar perturbation

The other bodies, such as the Sun or Moon,
have a greater effect on satellites in higher
altitude orbits. Because the cause of
perturbations from the Sun and the Moon is the
gravitational attraction; which is conservative.



M.E. AWAD, et al.,

let the third body denoted by 3 and assume
the mass of the satellite is negligible. The
general form of the equation of motion for the
three-body system is [11]

- I
= ﬂ@ ®sat +ﬂa( sat3 esaaj, (4.1)

@sat sat3 ®3

=:

where
@ is the subscript denoted to the Earth, and

sat is the subscript denoted to the artificial
satellite.

The first term of equation (4.1) is the two-
body acceleration of the Earth acting on the
satellite. The second term has two parts (direct
and indirect effect) and it represents the
perturbation.

5. Variation of the parameter (VOP)

Lagrange and Gauss both developed VOP
methods to analyze perturbations. Lagrange's
technique works for conservative accelerations.
Gauss's technique works for non-conservative
accelerations.

The VOP equations of motion are a system
of first-order differential equations that
describe the rates of change for the time-
varying elements. The gauss’s VOP uses the
specific force components resolved in the
satellite coordinate system RSW [8, 9 and 11].
It’s expressed as

da 2 . p
—=————1esinvk, +—rF. |, (6.1
dt n\/1—e2( " S) G
de_vi-e {sinvF +(c05v+e+coSV jF}
dt na f l+ecosv ) °
(5.2)
dl rcosu
—_—=——F,, 5.3
dt na?Ji-e? 3)
dQ rsinu F . (5.4)

dt  nasinvyi-e?
do_+1-¢ {—COSVE +sinv(l+rJE}_rCOtISInUFW,
p

dt  nae h
(5.5)

M, _
dt nea®

—{(pcosv—2er)F, —(p+r)sinv Fj- [tj:it (t-t,)

(5.6)

If the disturbing function R is known,
we can use the Gaussian form of each force
component.

The acceleration components of the
disturbing force are

OR
F,=—, 5.7
Ry (5.7)
10R
F.=——, 5.8
S rou (5:8)
1 R (5.9)
rsinu ol
Using equation (3.1), then
OR
F,=—, 5.10
Ry (5.10)
10R
F.=——, 511
* rou (5.11)
oLt R (5.12)
rsinu ol

zonal harmonics cause secular variation in three
orbital elements, right ascension of ascending
nod £ the argument of perigee w, and mean
anomaly M [6 and 12].

The secular rate of change of nod @ is
given by

2
= —?’nJ—ZR@cos I, (5.13)

'sec 2 pz
where
Re is the radius of the Earth,
n is the mean motion,
p is the semi-parameter,
| is the inclination.

An analytical solution to determine the
change in the node over time is

Q=0,+QAt, (5.14)

where ( is the initial value of the node.

The secular rate of change of argument of
perigee wis
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2
Dype = — 3n4J 2 Ro (4-5co0s” 1) ,(5.15)
p*

An analytical solution to determine the
change in the argument of perigee over time is

0=w,+woAt, (5.16)
where an is the initial value of the
argument of perigee.

An analytical solution to determine the
change in the mean anomaly M over time is

M = Mo+ n At, (5.17)
where
Mo is the initial value of mean anomaly.

The secular rate of change of Mg is

2
M, = N9z Re V1~ e’ (-2 +3sin?1).
0 4p

(5.18)

Now we will reproduce the VOP equations
of motion under Luni-solar force.  These
expressions show the complexity of
analytically  modeling  for  third-body
perturbations. In the first, we needed to the
direction cosines for the third body. The
direction cosines, A, B and C

A = cos(lz) sin(us) sin(2-6%) + cos(2-%)
cos(us), (5.19)

B = cos(l) [cos(ls) sin(us) cos(£2-£25) — sin(£2-
£2) cos(usz)] + sin(l) sin(ls) sin(us),
(5.20)

C = sin(l) [-cos(l3) sin(us) cos(£2-£%) + sin(2-
£) cos(us)] + cos(l) sin(l3) sin(us),
(5.22)
The secular and periodic (short and long

periodic) rates of change (deg./day) of the
elements [1] are

a=0, (5.22)
|, =-ae,
(5.23)

- %#[ZABCOS(ZCU) (A? - B?)sin(20))
ne

, (5.24)

[ L{A[Zﬁez +5€' cos(2w) | +5¢° Bsin(Zm)},

4nryl-¢

(5.25)
§= zmr:mpvc ,1_—ez{B[Z+3ez ~5¢'c0s(20) |+ 5¢' Asin(2v)|,
(5.26)

3u «/1_8

5ABSIN(20) +~ (A’ - B')cos(20) -1+ N-8)|
2< ) 2

Soos |+ 15ua[Acosw+Bsmm]{ Sa- B)}
denr’ 2

(5.27)

For small eccentricities, the second-order
terms become noticeable for the argument of
perigee. The only secular rate of changes will
be in the node, the perigee, and the mean
anomaly at epoch. For a circular orbit, we
obtain the secular rate of change of nod Qis

_3u[2-3sin’ 1, J2+3¢°)

Q
16nr V1€’

0s |,

sec

(5.28)

The secular rate of change of argument of
perigee wis
:—3%[2_35"12 I3](4+e2 —5sin? I).
16nrdV1—e?

Sec

(5.29)

Smith's equations [2] that include terms
ine; are
o -3 [-ssin’ 1 fi-e’flr5e’)
8n I’33 \/(1—632)2

(5.30)

s 2 2
o Sm[-ssin’ e )2[4+5e2(3—;sin2Ij—Ssinzl]-

o enii1-¢?

(5.31)
6. The Ground tracks
To convert a position vector for a

satellite to the corresponding latitude and
longitude (is the core technique in determining
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ground tracks). We have two ways to do this
transformation: one is iterative and another is
analytical [5]. We find the right ascension
directly from the Cartesian position vector. Let
the equatorial projection of the satellite's
position vector be

Fsat = r|2 + rJ2 ' (6.1)

We find the right ascension through sine
and cosine expressions

sinézL, (6.2.1)
r§sat
rJ

COSO =——. (6.2.2)
rb‘sat

The difficult part of finding the geodetic
latitude is that it usually requires iteration. To
determine a starting value for the iteration, we
can use the position vector as a rough guess
because the declination and geocentric latitude
are equal [7]. Thus,

sin & = Jeat , (6.3)
r
Now we find an expression for geodetic
latitude ¢4, we now have the satellite
coordinates and not the site coordinates.
Assume ¢y = O. The sine and cosine
expressions [11] are given by

. r
sing,, S+ : (6.4.1)
COSdyy = L. (6.4.2)
Co +Nyyp
Solving the sine expression for henp gives
us
hellp = L -Sg, (6.5)
singy,
the tangent expression is
tang,, = singhg _ % (Co + M) (6.6)

Cos ¢gd - s (S® + hellp) .

Substitute henp using equation (6.5)

r
r{C.+—%x—-S

tan g,y = : (6.6)
I,
;| Sg+——<——S
”{ ° sing, @]
where C,, denoted by
S
C,=—2-, 6.7
@ 1—953 ( )
Substitute equation (6.7) into equation (6.6)
S I, .
I ® +-—K& S |sin
k(l—ejD sin g, ®j P
tang,, = ,
rk r5
(6.8)
tengs, - r (1—e2) +S, sing,, —ZS® sing,, (1-e3)
rs(l_e@)
, (6.9)
r (1—e2)+S, e2sin
r;(1—eg)
Using equation (6.7), then
1-e2)|r. +C, €’ sin
tan¢gd=( Bl e ¢9“], (6.11)
Is (1—8@)
I +C, e2sin
tang,, =-———— Do (6.12)
r,(1—eg)

7. RESULTING AND CONCLUSION

In this section, a computer simulation has
been developed to the equation of perturbed
orbital motion due to spherical zonal
harmonics/= and Luni-Solar forces using the
Matlab program. The perturbed ground track
under /= and Luni-Solar was calculated after 5
days for China sat 2D, Molniya 3-31, and
Egypt sat A satellites. The two line elements
[13] are

China sat 2D

1 43920U 19001A 19011.36550613
00000967 13253-5 10000-3 0 9995

2 43920 27.1061 4.7362 7309322 179.7744
160.1328 2.28097794 25

Molniya 3-31
1 17328U 87008A 19002.75529764
.00000161 00000-0 00000+0 0 9998
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2 17328 63.9674 259.4577 6796076 265.7427
20.5276 2.00665848230580

Egypt sat A

1 44047U 19008A 19055.20707225 -
.00003965 00000-0 -62322-3 0 9995

2 44047 98.0166 121.3798 0003071 71.7230
288.4358 14.72075970 373
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Figure (7.1) shows one revolution of perturbed ground track for China sat 2D after 5 days.

B
o ST TR, .,__/
80 [—
: & 5 e & = =
! ; East Longitude [deg]
Figure (7.1): Perturbed ground track for China sat 2D.

Figure (7.2) shows one revolution of perturbed ground track for Molniya 3-31 after 5 days.

M—

Figure (7.2): Perturbed ground track for Molniya 3-31

Figure (7.3) shows one revolution of perturbed ground track for Egypt sat A after 5 days.

; 5 % I % %
Figure (7.3): Perturbed ground track for Egypt sat A
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The perturbed ground track is calculated

under the effect of J, and luni-solar forces.
The perturbed position vectors for a satellite is
converted to the corresponding latitude and
longitude. As expected the strongest

perturbation due to the /= acting on the nearest
satellite to the Earth as shown Figure (7.1) to
Figure (7.3). The satellite's positions in one
revolution are displayed to represent where the
satellite at the time desired.
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