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ABSTRACT 
 

In this paper, the vibration reducing of the harmonically excited nonlinear system is presented via applying 

positive position feedback controller (PPF). The analytical results are obtained by applying the multiple -scale 

perturbation techniques (MSPT) up to second-order approximations. The frequency response equation (FRE) is 

studied to test the behavior of the steady state solutions near the simultaneous resonances. The effects of the 

several parameters and the behavior of the system at resonance case are investigated to illustrate the optimum 

working conditions for the PPF controller. The stability analysis for the uncontrolled system is investigated by 

applying the phase portrait technique. Moreover, numerical simulation is used to compare between time-history 

and the analytical solution. The analytical and numerical solutions are compared to show the validity of the 

results. Finally, a comparison with the available results in the literature is presented. 
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1. INTRODUCTION 

The study of nonlinear systems is of great importance in physics, since physical phenomena in 

nature are intrinsically nonlinear. Therefore, here is a challenge in various fields of research to 

understand the nonlinear systems such that we can develop novel approaches depend in the theory of 

dynamical modeling [1]. There is extensive research work studying the solution of such nonlinear 

systems  in literature. For instance, Ref. [2], examined combining the pitch and roll motion of ships. 

Hence, the saturation phenomenon was discovered. Since, the design passive vibration control is too 

complex and difficult to control exactly, the percentage of internal resonance and active vibration 

control has been used. Therefore, many authors implement advanced control. 

In the work of Ref. [3] the horizontal oscillation of the magnetic moving body object has been 

reduced by the including a nonlinear saturation controller (NSC) to the nonlinear differential equation. 

Multivariate the technique of multiple scales was applied to get an analytical solution and to explain 

the behavior of this model. In another research paper [4] loop delays have been taken into 

consideration, when PPF controller was applied. In that case, vibrations of self-excited and forced 

nonlinear beam could be reduced and approximate solution was studied after using MTSP technique.  

On the other hand, analytical formulas for calculating the induced resonance frequency 

transformations of electrically charged, micro-and nano-imposed (carbon nanotubes) beams, were 

obtained [5], due to adding mass. The linear dynamical responses of the added masses were 

investigated after being systemized on a separate point of masses that depend in the theory of Euler 

Bernoulli beam. And finally a comparison was made between the analytical results and the numerical 

solution to the problem. Moreover, the beam can be cracked and with the influence of harmonic 

excitement, using different control techniques [6]. These controls are Positive position feedback 

(PPF), integral resonance control (IRC) and nonlinearity NIPPF observations. To obtain the 

mathematical analysis and observing the curves of multi-branch frequency amplitude, multiple scales 

process was applied. Additionally, the sensitivity of the frequency responses to the frequency ratio 

mailto:halasalman35@yahoo.com


Y. A. AMER, et al 10 

increased in higher depth ratios. The nonlinear s.d.o.f. system of the fifth order under external stirring 

with two distinct delay time, was studied in [7]. They introduced an investigation of primary and 

super harmonic of order five, and subharmonic of order one-three resonances for this system. The 

equations of the modulation for the amplitudes and the phases have determined by using the technique 

of multiple scales. They also investigated in each resonance about the stabilities regions and their 

steady-state solutions. In addition, by using the Mathematica Software, the numerical results were 

obtained. Finally they discussed the influence of the time-delays and feedback gains on the non-linear 

response of this system. To reduce the peak amplitude of the response for the case of primary, they 

have chosen a suitable time-delays and feedback gains that could increase the critical force amplitude. 

The stability of the non-autonomous bicircular four-body system, has been analyzed in [8]. By 

using Newton’s law of gravity they derived the governing equation. In Ref. [9], the multiple scales 

perturbation method was used to check oscillations in the compressor rotating blade. In order to 

decrease the oscillations in this model, they applied position with velocity feedback controller. In Ref. 

[10] mass presented analytical formulations was added in order to compute the persuaded resonance 

frequency shifts of electrically activated clamped–clamped micro and nano (Carbon nanotube) beams. 

In this case, the beam’s linear dynamic responses added masses depend on the theory of Euler–

Bernoulli beam. The oscillations of a self-excited and forced nonlinear beam applied PPF controller 

has been reduced in [11]. MSPT has been used to obtain an approximate solution of first-order in the 

simultaneous resonance case. The curves of the equilibrium solution are designed for various values 

of controller parameters. They investigated the steady state solution by using the equations of 

frequency-response. Then the approximate solution was verified numerically. 

In Ref. [12], stochastic dynamic of a piezoelectric energy harvesting device, was studied. They 

presented the lumped parameter of physical model representing the device, hence they developed a 

normalized mathematical system for simulating the model. Accordingly, they applied the random 

vibration theory in order to describe the device’s output power in terms of the excitation of the 

neighboring media. Then, they have maximized the mean value of the normalized gathered power. On 

the other hand, the multi Positive Feedback (MPF) control was studied in [13]. That was a new 

technique for active vibration reduction in flexible smart constructions. The same authors [14] studied 

a novel Nonlinear Integral Resonant Controller (NIRC). In that respect, the vibrations in nonlinear 

vibrational smart structures were suppressed using the method of Multiple Scales. In that case, they 

could get an analytical solution for the closed-loop model. The multi-body dynamical system of the 

Virginia Tech Roller Rig (VTRR) was developed [15], via multi body simulation software package 

SIMPACK. They used multi body dynamical system for conducting vibration, noise, harshness 

analysis of the rig. In this regard, the Integral Consensus Control (ICC) can be introduced [16], as a 

novel vibration control procedure. Therefore, the unwanted oscillations in flexible structures can be 

suppressed. The absorber methodology was a network-based distributed technique, and used 

consensus control design. However, the vibration of a nonlinear model can be [17], using PPF active 

controller, when subjected to external primary resonance excitation and one can obtain a first-order 

analytical solution using MSPT. 

Nonlinear oscillations of flexible structures can be reduced [18], using nonlinear modified positive 

position feedback (NMPPF).  Where a PPF controller was modified by a first-order compensator. In 

Ref. [19] the PPF absorber was considered to reduce the oscillations of a vertical conveyor. Here, two 

PPF controllers were used to reduce the vertical vibration in a vertical conveyor. In this respect, two 

PPF controllers can be integrated on a system of horizontally Jeffcott-rotor, in order to suppress the 

vertical and horizontal vibrations of this system. Therefore, one can obtain the analytical solution of a 

second-order governing equations of system that includes cubic and quadratic nonlinear terms. by 

applying MSPT. In a nutshell, the previous studies was considered to reduce the vibrations of the 

various dynamic models by adding controllers such as PPF, NSC, NIPPF and etc. or by studying the 

delay of time. However, in this article, we investigate an active vibration control with external 

excitations of a nonlinear s.d.o.f. system of the fifth order mentioned in [7] by applying positive 

position feedback (PPF) controller.  
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where ( 1,2,...,8)jC j  are complex functions in 
1T  and 

2T  , which are presented in the appendix. 

Similarly, by substituting from Eqs. (17) - (18) into Eqs. (11)- (12), then exclusion the secular 

terms from equations (19), (20), the general solutions of these equations are obtained as follows 

2 1 1 2 1 0 2 1 2 1 0 3 1 2 1 0 4 1 2( , )exp(9 ) ( , )exp(8 ) ( , )exp(6 ) ( , )x E T T i T E T T i T E T T i T E T T     

1 0 5 1 2 2 0 6 1 2 1 0 7 1 2 1 2 0exp(7 ) ( , )exp( ) ( , )exp(2 ) ( , )exp( (2 ) )i T E T T i T E T T i T E T T i T        

8 1 2 1 0 9 1 2 1 2 0 10 1 2( , )exp( (2 ) ) ( , )exp( (2 ) ) ( , )E T T i T E T T i T E T T        

1 0 11 1 2 1 0 12 1 2 1 2 0 13 1 2exp( ( 2 ) ) ( , )exp(3 ) ( , )exp( (3 ) ) ( , )i T E T T i T E T T i T E T T          

1 0 14 1 2 1 2 0 15 1 2 1 0exp( (3 ) ) ( , )exp( (3 ) ) ( , )exp( ( 3 ) )i T E T T i T E T T i T           

16 1 2 1 0 17 1 2 1 2 0 18 1 2 1 0( , )exp(4 ) ( , )exp( (4 ) ) ( , )exp( (4 ) )E T T i T E T T i T E T T i T         

19 1 2 1 0 20 1 2 0 21 1 2 1 2 0( , )exp(5 ) ( , )exp( ) ( , )exp( ( ) )E T T i T E T T i T E T T i T        

22 1 2 1 0 23 1 2 1 2 0 24 1 2( , )exp( ( ) ) ( , )exp( ( ) ) ( , )E T T i T E T T i T E T T        

1 0 25 1 2exp( ( ) ) ( , )i T E T T                                                                                            (19) 

2 26 1 2 1 0 27 1 2 1 0 28 1 2 1 0 29 1 2( , )exp(2 ) ( , )exp(3 ) ( , )exp(4 ) ( , )y E T T i T E T T i T E T T i T E T T     

1 0 30 1 2 0 31 1 2 1 0 32 1 2exp(5 ) ( , )exp( ) ( , )exp( ) ( , )i T E T T i T E T T i T E T T                (20) 

where ( 1,2,...,32)vE v  are complex functions in 1T  and 2T , which are presented in the appendix 

(4). Then we can find the analytical solution of equations (1), (2) by substituting equations (13), (14), 

(17), (18), (19) and (20) into equations (3) and (4). 

2.1 Periodic Solution 

The simultaneous (primary and internal) resonance case (
1 2 1,     ) are investigated from 

the first-order approximation solution. By introducing small parameter as follow: 

1 1 1 1
ˆ         and 

2 1 2 1 2
ˆ                                                                (21) 

Inserting Eq. (21) after using Eqs.(5)- (6) into the small-divisor and secular terms of Eqs. 

(15)-(16), we get the following solvability conditions: 

1 1 2 1ˆ ˆ2 2 32 4
1 1

1 1 1 1

ˆ ˆ ˆˆ3 5
ˆ

4 2 2

i T i Ti ii F i
D A e A A A B e A A

  


   
                       (22) 

2 1ˆ

1 2

2

ˆ
ˆ

2

i Ti
D B A e B







                                                                                                        (23)  

To investigate the solution of equations (22)- (23), it is suitable to refer the polar form of 
1( )A T  

and  
1( )B T  as:  

1 2,
2 2

i ia b
A e B e

 
                                                                                                                   (24) 

By inserting Eq. (24) into Eqs. (22)- (23), and after some mathematical manipulations, we get the 

autonomous equations of the amplitude and phase modulating: 
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1 1 2

1 1

sin( ) sin( )
2 2

F
a a b


  

 
                                                                                 (25) 

2 42 4
1 1 1 2

1 1 1 1

3 5
cos( ) cos( )

8 2 2 16

F
a b a

a a

 
   

   
                                       (26) 

2 2

2

sin( )
2

b b a


 


                                                                     (27) 

2 42 4
2 2 1 2 2

1 1 1 1 2

3 5
cos( ) cos( ) cos( )

8 2 2 16 2

F
a b a a

a a b

  
    

    
       (28) 

where, 
1 1 1 1 1 1 2 2 1 1 2 2 1 2

ˆ ˆ,T t T t                     . 

Thus
 1 1 1 2 2 2 1 2 2 1 1,                   . 

2.2 Equilibrium solution 

We have that at steady-state motion 

1 2 0a b                                                                                                     (29) 

Substituting Eqs. (29) into Eqs.  (25) - (28), we get     

1 1 2

1 1

sin( ) sin( )
2 2

F
a b


  

 
                                                                   (30) 

3 52 4
1 1 2

1 1 1 1

3 5
cos( ) cos( )

8 2 2 16

F
a a b a

 
  

   
                   (31) 

2 2

2

sin( )
2

b a


 


                                                (32) 

1 2 2

2

( ) cos( )
2

b a


  


                                                 (33) 

By using Eqs. (30) - (33), we obtain  

  

2
2 2

22 2

2 2 1 24
b a



   


 
                                                       (34) 

   
2

22 3 5

1 1 1 3 2 4 2

1

( )
4

F
a Z a a Z a Z a Z 


                                       (35) 

Where 

  
 

  
1 22 2 4

1 2 3 42 22 2
1 11 2 2 1 2 1 2 2 1 2

3 5

8 164 4

       

        


   

   
, , , .Z Z Z Z    

Equations (34) and (35) are the FRE that utilized to characterize the steady state solutions 

conductance for the practical state i.e. ( 0 , 0a b   ).                     

 



VIBRATIONS CONTROL OF THE HARMONICALLY EXCITED 15 

2.3 Stability analysis 

To define the stability of the steady-state solution, present the following forms: 

1 0 1 0 1 11 10 2 21 20, , ,a a a b b b                                                                (36) 

Substituting from  Eq. (36) into Eqs. (25) - (28), and consideration only the linear terms in 

1 11 1, ,a b  and 
21 , we get the next equations that can be established in the matrix form as: 

1 11 12 13 14 1

11 21 22 23 24 11

31 32 33 34 11

2141 42 43 4421

a r r r r a

r r r r

r r r r b

r r r r

b

 





     
     
     
     
     

   

                                                                            (37) 

where the above square matrix is the Jacobian matrix, , 1,2,3,4lmr l   and 1,2,3,4m   are given in 

the Appendix. The eigenvalues of the above system can be illustrated as: 
4 3 2

1 2 3 4
0       r r r r                                                                                    (38) 

1. The method of phase portrait for the system. 

In this section we discuss the phase plan form that can be characterized by two equations of 

nonlinear first order for the main system without control i.e 
20, 0b   as follows: 

1 1 1 1

1

( , ) sin( ) 0
2

F
a f a a  


                                                                        (39) 

3 52 4
1 2 1 1 1

1 1 1

3 5
( , ) cos( ) 0

8 16 2

F
f a a a a

 
   

  
                                      (40) 

On the Poincaré phase plane, the phase orbits, which are represented by the vector fields 

corresponding to equations (39) and (40), provide useful data about the properties of the main system. 

We can put the equations (39) and (40) in the form ,VJV   where J is the Jacobian matrix  as 

follows: 

1 1
1 1

1 1

2 41 2 2 4 21
1 1

1 1 1 1

cos( )
2

, ,
9 25

sin( )
8 16 2

f f F

a aa
V V J

f f F
a a

a

 
 

  
 

   

  
       

     
             

 (41) 

We can look for equilibrium points, and define whether the function changes toward or away from 

these points as time passes giving rise to the asymptotic behavior of the function without having to 

solve for it. 

If we put 10, 0a    in system (39) and (40) solving it, we get the critical (equilibrium or rest) 

points at the values of system parameters as 
1 0.05,   

2 41, 0.05,    

10.5 , 5,F   1 0   that are (0.753646, 0.853591 +6.28319 k), k   integer. By using these 

critical points we will explain the phase portrait classifications for values of the eigenvalues 
1 2,   

which obtained from det[ ] 0J I  . Because of the eigenvalues take the complex formula 

( 1,2 , 0, 0c i d c d      ), the equilibrium point is classified as the asymptotically stable spiral 

(spirals in) point at (0.753646, 0.853591+6.28319 k), (k   Integers) that illustrated in figure 2 as in 

Ref [21]. If we change the values of system parameters this will lead to change the critical points and 

there eigenvalues classifications that can be summarized as in table 1.   
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Table [1]: Equilibria classification for almost linear systems 

Eigenvalues of J Nonlinear classification 

21 0    Unstable saddle 

021    Stable proper node 

021    Unstable proper node 

021    Stable improper node or spiral 

021    Unstable improper node or spiral 

,21 dic   0,0  dc  Stable spiral 

,21 dic   0,0  dc  Unstable spiral 

,21 di  0d  Stable or unstable ,center or spiral 

 

 

 Fig.2 phase plane of the uncontrolled system    

 

2. RESULTS AND DISCUSSIONS 

2.1 Time History 

Based on MATLAB computer program in this section, we simulated numerically equations (1)-

(2) which introduced the nonlinear dynamical model without and with involved PPF control to show 

the reduce of vibration after adding this control. After inserting the values of parameters 

as
1 1 2 3 4 1 20.05, 0.5 , 1, 1 , 0.05, 0.5 , , 0.005,F               , 5, 10,    

1 2 15,     the time history can be illustrated as in Figs. (3), (4). Fig. (3) represents the 

uncontrolled amplitude time history and phase plane at primary resonance of the main model. Fig. (4) 

illustrates the time histories of both controlled amplitude of the main model and PPF amplitude also, 

phase plane of both the main system and controller at primary and 1:1 internal resonance. We notice 

that from Fig. (2) after using the PPF controller the oscillations amplitude for the basic model reaches 

to 0.0005091, this interpret that the oscillations suppressed to about 99.93% from its value without 

PPF control after short time 150t Sec . This leads to the effectiveness of the absorber aE  ( aE  = 

the system  steady-state amplitude before controller / the system steady-state amplitude after 

controller) is around 1478.099 after using PPF controller for the essential system.  
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Fig.3 Time History of Uncontrolled system vibration amplitude at primary resonance 

 
 Fig.4 The main system with PPF control time History at primary and 1:1 internal resonance 

 

2.2 Comparison of time history between numerical and analytical solutions 

Applying the condition for a steady-state solution, that is, 1 2
0    a b  at the 1:1 internal 

and primary resonance, the comparison between the numerical solutions of equations (1) and (2) for 

PPF control and the analytical solutions given by equations (31) - (34) has been declared as in Fig.5. 

The dashed lines indicate the amplitudes modulation  ,a b   for the generalized coordinate ,x y . On 

the other hand, the continuous lines characterize the time history of oscillations, which acquired 

numerically as solutions of the equations of the system with PPF controller. From this figure, we 

found that the two studying cases of resonance are applicable to each other at the steady state solution. 

Also, there is a good agreement between approximate and numerical solutions. 

 

 
Fig.5 Comparison between numerical simulation and perturbation analysis for the main system with 

PPF control 

 

2.3 Effects of various parameters on the system steady-state behavior 

Fig.6 shows that the FRC for the controlled system at the practical case ( 0 , 0a b  ), where 

the dashed line is an unstable area and the continuous line is a stable region. Also, we observed that 
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the FRC contain two beaks lies on left and right 1 0  .Fig. 6a displays the steady-state amplitude 

for the essential model ( a against 1  ) and Fig. 6b displays the steady-state amplitude for PPF 

controller (b against 1 ).  At increasing the values of the damping coefficient 1   as illustrated in 

Figs. 7a and 7b, the beaks of steady state amplitudes of the essential system and controller 

respectively decreases.  The effects of the linear natural frequency 1  for essential model and 

controller appears in Figs.8a and 8b. By decreasing the numbers of the linear natural frequency, the 

beaks of essential system and controller amplitudes increase, the unstable region increases and the 

bandwidth of vibration suppression for the essential system and the controller increases. Fig.9 and 

Fig.10 shows that when changing the sign of non-linear coefficient
 2 and 

4  respectively , the 

amplitude for the essential system a  and the amplitude of absorber b  is curved to the right with 

positive sign denoting a hardening-type spring nonlinearity. On the other wise, with negative sign 

denoting a softing-type spring nonlinearity occurred when the amplitude for the essential system a  

and the amplitude of absorber b  is curved to the left. In Fig. 11(a, b), we display the FRC of the 

harmonic force amplitude F  for the essential system and the restrainer, respectively. Also, this figure 

shows that the more increasing in the harmonic force amplitude the more bending away of the FRC 

away from the linear curves and the more increasing the beaks of amplitudes. The unstable regions are 

increased with increasing the external force.  

Fig. 12 (a, b) indicates that for growing values of the damping factor for the absorber 
2 , the 

steady-state amplitudes for the essential model  and the absorber are reduced, and the unstable region 

is decreased until total figure become stable. Also, we noticed that at 
1 0    the amplitude of the 

main system moving away from zero, which is supposed to reach zero at primary resonance case  

1   that occurs at 
1 0  , therefore, it is preferable to take a small value for the variable 

2 . The 

bandwidths are gradually appearing for increasing the control signal gain    and the feedback signal 

gain   values as illustrated in Fig. 13 and Fig.14, respectively. Also, the peaks amplitudes of PPF 

control are reducing at increasing the number of   as in Fig. 13b. on the other hand, the peaks 

amplitudes of PPF control are increasing at growing the value of   as in Fig. 14b. 

At the detuning parameter 
2

 
is increased as in Figs. 15a and 15b, the amplitudes of the essential 

model and PPF moved to right and the amplitude peak value of  right-hand control and the amplitude 

peak value of left-hand side are growing and reducing. Using the curves of frequency response, we 

concluded that the value of 
2  must be equal the value of 

1  to obtain the smallest value of the 

steady-state amplitude of essential system and the absorber which cleared at
2 1 1    , 

2 1 0    and
2 1 1   .In Fig. 16 we using MATLAB® computer program to appear the 

rapprochement between the FRC and the numerical solution by the small circles. From this figure, all 

predictions based on evidence of the analytical solution are at extremely valid coincidence with the 

numerical solution. 

In Figure 17, a comparison is made between FRC before and after adding control. Note that after 

the addition of control, the amplitude of the system decreases at the measured resonance i.e when 

1 0  , and two beaks are shown on the sides of the 
1 0  .  
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Fig.6 The FRC of Controlled system (a) ( a  against 

1  
), and (b) (b  against  

1 ) 

 

Fig.7. Damping coefficient
1  effects: (a) the main system amplitude a (b) PPF amplitude  b  . 

 
Fig.8. Natural frequency

1  effects: (a) the main system amplitude a (b) PPF amplitude  b  . 

 

 

Fig.9. Nonlinear coefficient
2  

effects: (a) the main system amplitude a (b) PPF amplitude  b  . 

 
Fig.10. Nonlinear coefficient

4  effects: (a) the main system amplitude a (b) PPF amplitude  b  . 
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Fig.11. External force

1F  effects: (a) the main system amplitude a (b) PPF amplitude  b  . 

 

Fig.12. Damping coefficient
2  effects: (a) the main system amplitude a (b) PPF amplitude  b  . 

 

Fig.13. Control signal gains   effects: (a) the main system amplitude a (b) PPF amplitude  b  . 

 

Fig.14. Feedback signal gains   effects: (a) the main system amplitude a (b) PPF amplitude  b  

 
Fig.15. Detuning parameter 

2  effects: (a) the main system amplitude a (b) PPF amplitude b . 
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Fig.16. FRC and numerical solutions (a) ( a  against 

1  
), and (b) ( b  against  

1 ) 

 
Fig.17. Comparison between the FRC of an Uncontrolled system and controlled system 

 

3. Comparison between the previous works and this work 

a. In a previous work [7], the authors investigated  a non-linear s.d.o.f. model under an external 

excitation with two distinct time-delays to analysis of superharmonic, primary of order five, and 

sub harmonic of order one three resonances. In each studied resonance, the solutions of steady-

state and their stabilities are determined. They discussed the effect of time-delays and the 

feedback gains of the system and they enhanced the perfect appropriate feedback.. 

b. Firstly, we are adding PPF control equation to the non-linear s.d.o.f. equation an external 

excitation mentioned in Ref. [7] to control the vibration model as shown in this work. 

c. Secondly, we applied the MSPT to get a solution of the studied system and examined the stability 

of this system. 

d. Finally, we have succeeded in decreasing the amplitude of steady-state for the main system to 

99.93% after using PPF absorber from its value before absorber. For obtaining the effective PPF 

controller, we have found that it is essential tuning the external excitation frequency to the 

controller natural frequency ( 
2  ). 

6. CONCLUSION 

The nonlinear dynamical system connected to PPF was introduced with two coupled differential 

equations. These equations have been solved analytically by using MSPT approximation. The FRE 

has been obtained near the primary resonance and 1:1 iinternal resonance. The time development of 

the amplitudes and phases of both the essential model and the absorber are represented by four first 

order differential equations that derived by MSPT. After that we have investigated the influences of 

the parameters to present the amplitude performance of the model and PPF. The stability study is 

completed to define the stable boundary of the control variables.  From this research, the highlighted 

points can be summarized as following:  

1. By using PPF controller, the amplitude of steady-state is decreased to 99.93 % from its value 

before control. 

2. The effectiveness of the absorber  aE  is about 1478.099 when using PPF controller for the main 

system. 

3. The amplitudes of the essential system a  and the controller b  are increased when increasing the 

values of F .  
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4. The FRC of the model and the absorber are curved to the right denoting a hardening-type spring 

nonlinearity when changing the sign to positive value of 
2  and 

4 . On the other wise, with 

negative sign  of 
2  and 

4  the FRC of the system and the controller are curved to the left  

denoting a softening-type spring nonlinearity. 

5. The best performance for the amplitude vibration reduction which reach to zero when 
12    ( 

1  ) . 

There are good agreements when make a comparison between the approximate and the numerical 

solutions at time history and the FRC as presented in Figs. 3 and 14 at the resonance case of study, 

respectively.   

Appendix 

   2 3 3 4 4
1 3 2 4 3

1 2 3 42 2 2 2 2

1 2 1 1 1

ˆ ˆ ˆ ˆ4 5 ˆˆ
, , ,

5 8 15

A A A A A A AB
C C C C

    

    

    
   


 

 
 

2 25
1 34

5 6 7 82 2 2 22 2
1 1 2 11

ˆˆ ˆ ˆ3ˆ
, , , ,

15 2

A A A AA F A
C C C C

  

   

 
   


 

4

4 5
1 2

1

5

80






ˆ
,

A C
E  3

2 3 5 4 42

1

1
4 5

63
 


  


ˆ ˆ( ( )),E A C A C  

3 5 1 3 3 3 2 4 4 2 42

1

1
2 6 4 5 3 20

35
     


      


ˆ ˆ ˆ ˆ ˆ ˆ( ( ( ) ( ( ) ( )))),E A C A A A A C AC C A A  

2

4 4 3 3 4 5 2 42

1

1
ˆ ˆ ˆ ˆ( ( (4 5 ) (3 20 ))),

48
E A A C A C C A A   


    
  

2
2

5 1 2 1 4 2 1 1 1 12 2

1 2

1
ˆ ˆ( 2(3 15 ( ))),E A C A A A C i C D C   

 
    

  

2 3 4 3

6 4 2 5 3 3 1 3 2 4 7 42

1

1
ˆ ˆ ˆ ˆ ˆ ˆ( 3 4 2 ( 6 ) 5 20

3
E A C A C A C A A A C A A C     


      


2 2 3
7 2 2 4 2 2 4 4 2 1 1 1 2 1

ˆ ˆ ˆ ˆ ˆ3 ( 10 ) 2 (3 10 ) 4 4 ),A C A C A A C A C i C i D C           
 

2

7 1 2 42

1 2 2 1

1
ˆ ˆ( (3 20 )),

3 ( 4 )
E A C A A 

   
  
    

2

8 6 7 2 42

1 1

1
ˆ ˆ( (3 20 )),

3 ( 4 )
E A C C A A 

 
  
    

2

9 1 2 42

1 2 2 1

1
ˆ ˆ( (3 20 )),

3 ( 4 )
E A C A A 

   
  
    

2

10 6 2 42

1 1

1
ˆ ˆ( (3 20 )),

3 ( 4 )
E A C A A 

 
  
    

2 3 2

11 4 1 5 2 7 7 3 2 3 3 4 2 12

1

1
ˆ ˆ ˆ ˆ ˆ ˆ( 2 3 4 ( ) 6 (2 5 ) 2 (

8
E A C A C A C C A A C C A A C     


       
  



VIBRATIONS CONTROL OF THE HARMONICALLY EXCITED 23 

2

3 2 4 3 5 4 1 1 3 1 1 3
ˆ ˆ ˆ ˆ(3 6 10 )) 6 6 ),A C C A C A i C i D C         

 
3 3

1 3 6 3
12 132 2

1 2 2 1 1 1

ˆ ˆ4 4
, ,

8 ( 6 ) 8 ( 6 )

A C A C
E E

 

     
 

     

3 3

1 3 6 3
14 152 2

1 2 2 1 1 1

ˆ ˆ4 4
, ,

8 ( 6 ) 8 ( 6 )

A C A C
E E

 

     
 

     

2 2 4

16 3 1 5 1 2 2 4 2 3 3 7 42

1

1
ˆ ˆ ˆ ˆ ˆ ˆ( 2 2 3 6 12 5

15
E A C A C A C A A C A A C A C     


      


2 3 2 2 4

5 3 2 4 4 4 7 4 1 1 4 1 1 4
ˆ ˆ ˆ ˆ ˆ12 20 30 5 8 8 ),A A C A A C A A C A C i C i D C           

44

6 41 4
17 182 2

1 2 2 1 1 1

ˆˆ 55
, ,

15 ( 8 ) 15 ( 8 )

A CA C
E E



     
 

     

3

19 4 1 5 2 2 3 3 42

1

1
ˆ ˆ ˆ ˆ( 2 ( 3 ) 4 ( 5 )

24
E A C C A A C C A   


    
  

2

3 2 4 3 5 4 1 5 1 1 5
ˆ ˆ ˆ ˆ3 ( 2 (2 5 )) 10 ( )),A C A C C A i C D C        

 
2

2

20 6 2 6 4 6 1 1 62 2

1

1
ˆ ˆ( 2(3 15 ( ))) ,E A C A A A C i C D C  


     

  

2

21 1 1 1 3

2 2 1

1
ˆ ˆ( 2 12 ),

( 2 )
E A C A C A 

  
  
 

2

22 6 1 6 3

1

1
ˆ ˆ( 2 12 ),

( 2 )
E A C A C A 


  
   

23 1 1 3

2 2 1

1
ˆ ˆ( 2 ( 6 )),

( 2 )
E A C A A 

  
  
   

24 6 1 3

1

1
ˆ ˆ( 2 ( 6 )),

( 2 )
E A C A A 


  
   

2 3 2 2

25 2 7 2 2 3 3 4 72

2

1
ˆ ˆ ˆ ˆ( 6 3 4 30E A C A A C A A C A A C   


                   

3 4

4 2 4 4
ˆ ˆ20 5 ),A A C A C    

32
26 272 2 2 2

2 1 2 1

ˆˆ
, ,

4 9

CC
E E



   
 

 

54
28 292 2 2 2

2 1 2 1

ˆˆ
, ,

16 25

CC
E E



   
 

 
   

6 8 2 1 1 1 8
30 312 2 2 2

2 2 1

ˆ ( 2 2 )
, ,

C i C i D C
E E

   

  

 
 

 

7
32 2

2

ˆ
,

C
E






11 1 12 10 13 20 14 0 20

1 1 1
2 2 2

 
   

  
     , ( ) , ( ) , ( ) ,

F
r r cos r sin r b cos   

3

2 0 4 01
21 22 10 23 20

0 1 1 0 1 1 0

9 25

8 16 2 2

  
 

   
     ( ) , sin( ) , cos( ) ,

a a F
r r r

a a a
 



Y. A. AMER, et al 24 

24 0 20

1 0
2





  sin( ) ,r b

a
31 20 32 33 2 34 0 20

2 2

0
2 2

 
  

 
      ( ) , , , ( ),r sin r r r a cos   

3

2 0 4 02
41 20 42 10

0 1 1 2 0 1 0

9 25

8 16 2

  
 

   
     ( cos( )) , sin( ) ,

a a F
r r

a b a
 

2 4

2 0 4 02
43 20 10

0 1 0 1 0 0 0 1 0 1

3 5

2 8 16

  
 

   
    ( cos( ) cos( ) ),

a aF
r

b a a b b b
 

44 0 20 0 20

2 0 1 0
2 2

 
 

 
 ( sin( ) sin( ) ),r a b

b a
 

 

REFERENCES 

[1] Luo, A. C. J.:  A mathematical modeling approach from nonlinear dynamics to complex systems. Nonlinear 

Systems and Complexity, 2019. 

[2] A. Nayfeh, D. Mook, L. Marshall, Non-linear coupling of pitch and roll modes in ship motion, Journal of 

Hydronautics. 7 (4): 145–152, 1973. 

[3] Kamel M., Kandil A., El-Ganaini W. A, and Eissa A.  M., Active vibration control of a nonlinear magnetic 

levitation system via Nonlinear Saturation Controller (NSC), Nonlinear Dynamics, 77(3): 605-619, 2014. 

[4] Abdelhafez H., Nassar M., Effects of time delay on an active vibration control of a forced and Self-excited 

nonlinear beam. Nonlinear Dynamics, 86 (1): 137–151, 2016. 

[5] Bouchaala A., Nayfeh A. H, Younis M. I., Analytical study of the frequency shifts of micro and nano 

clamped–clamped beam resonators due to an added mass. Meccanica, 52(1-2): 333-348, 2017.   

[6] EL-Sayed A.T., Bauomy H.S., Outcome of Special Vibration Controller Techniques Linked to a Cracked 

Beam. Applied Mathematical Modeling, 63: 266-287, 2018.  

[7] Elnaggar, A.M., and Khalil, K.M.: The response of nonlinear controlled system under an external excitation 

via time delay state feedback. Journal of King Saud University – Engineering Sciences, 28(1): 75-83, 

2014. 

[8] Qian Y. J., Yang L.Y., Yang  X.D., and  Zhang W. Parametric stability analysis for planar bicircular 

restricted four-body problem. Astrodynamics, 2(2): 147-159, 2018. 

[9] Kandil A., Eissa M., Kamel M., El-Ganaini W.  and El-Gohary H. Actively controlling a rotating blade 

vibrations excited by a super harmonic force. Menoufia J. of Electronic Engineering Research (MJEER), 

27(2); 2018. 

[10] Bouchaala A . Nayfeh  A. H., and Younis M. I. Analytical study of the frequency shifts of micro and nano 

clamped–clamped beam resonators due to an added mass, Meccanica,52(1-2), 333-348, 2017.    

[11] Abdelhafez H. M.  and Nassar M. E. Suppression of Vibrations of a Forced and Self-excited Nonlinear 

Beam by Using Positive Position Feedback Controller PPF, British Journal of Mathematics & Computer 

Science. 17(4): 1-19, 2016. 

[12] Moeenfard H., Khadembashi M., Ghasemi A. H., and  Baqersa J. Logic Analytical Modeling of a 

Piezoelectric Energy Harvesters under Random Base Excitation, A Conference and Exposition on 

Structural Dynamics, 9: 227-238, Apr2017. 

[13] Omidi E., Mahmoodi S. N, and Shepard Jr. W. S., Multi positive feedback control method for active 

vibration suppression in flexible structures, Mechatronics, 33: 23-33, 2016. 

[14] Omidi E.,and  Mahmoodi S. N, Nonlinear integral resonant controller for vibration reduction in nonlinear 

systems, Acta Mechanica Sinica, 32(5):  925–934, 2016. 



VIBRATIONS CONTROL OF THE HARMONICALLY EXCITED 25 

[15] Meymand S. Z., Taheri M., Hosseinipour M., and Ahmadian M, Vibration Analysis of a Coupled 

Multibody Dynamic Model of a Contact Mechanics Roller Rig. Proceedings of the 2016 Joint Rail 

Conference JRC16 April 12-15, 2016, Columbia, SC, USA 

[16] Omidi E.,and  Mahmoodi S. Vibration Suppression of Distributed Parameter Flexible  Structures by 

Integral Consensus Control.  Journal of Sound and Vibration, 364: 1-13, 2016. 

[17] El-Ganaini W.A., Saeed ·N.A.,  Eissa  M., Positive position feedback (PPF) controller for suppression of 

nonlinear system vibration, Nonlinear Dynamics, 72(3):  517–537, 2013. 

[18] Omidi E and Mahmoodi SN., Nonlinear vibration suppression of flexible structures using nonlinear 

modified positive position feedback approach. Nonlinear Dynamics, 79(2): 835–849, 2015. 

[19] El-Sayed AT and Bauomy HS., Nonlinear analysis of vertical conveyor with positive position feedback 

(PPF) controllers. Nonlinear Dynamics, 83(1–2): 919–939, 2016. 

[20] Eissa M. and Saeed N.A., Nonlinear vibration control of a horizontally supported Jeffcott-rotor system. 

Journal of Vibration and Control, 1–24, 2017.  

[21] Abourabia A.M., Hassan K.M., and Selima E.S.: Painleve´ analysis and new analytical solutions for 

compound KdV–Burgers equation with variable coefficients. Canadian  Journal of Physics, 88(4), 211-

221, 2010. 

 



Y. A. AMER, et al 26 

فقيتاحو ةقو حأثير ححج خطيت غير هنظوهت اهخسازاث في الخحكن  

 الايجابى للووضع الورحدة الخغذيت باسخخدام
 

 

 عاهر عبدالعسيس ياسر
1
 السيد طه أشرف ، 

2
 صالخ الفخوح أبو عفاف ، 

3
 ،  

 نصر محمد أهل
3
سالواى فايس هالت ، 

2
 

 

 ثىشياضیااقسٌ  –اىعيً٘ميیت  –صقاصيقىاصاٍعت  -1

 الأساسیت اىعيً٘قسٌ  –باىَعادٙ ٗاىخنْ٘ى٘صیا ىيْٖذسٔ اىحذيزت الأماديَیٔ -2

 ثىشياضیااقسٌ  –(بْاث) اىعيً٘ميیت  –أصٕشىاصاٍعت  -3

 قسٌ اىعيً٘ الاساسیت –اىحاسباث ٗاىَعيٍ٘اث  ميیت –صاٍعت اىقإشة  -4

 

 اىٚ ٍخَذ اضافت طشيق عِ ٗرىلفقیت  اح٘ ةبق٘ سةٍزا خطیت غیش ىَْظٍ٘ت الإخضاصاث حقيیو ،ىبحذا ازٕفي 

 حخٚ دةىَخعذاٍْت صلأا ابضطشإطشيقت  اسخخذاً ًح ٗ.الايضابٚ ىيَ٘ضع اىَشحذة اىخغزيت ٕٗ٘  اىذساست ححج اىَْظٍ٘ت

 اىَخخيیت اىشّیِ حالاث ٗاسخْخاس, اىْظاً ٕزا حصف اىخٚ اىخفاضيیت ىيَعادلاث اىخقشيبٚ اىحو عيٚ ىيحص٘ه ّٚاىزا اىخقشيب

 اىَْظٍ٘ت اسخقشاس ىذساست اىخضاٗب ٍعادلاث عيٚ اىحص٘ه حٌ. اسخْخاصٖا حٌ اىخٚ سّیِ حاىت أس٘أ  ىخحذيذ عذديا ٗدساسخٖا

ىل عيٚ رحسضیو حأریش ٗ ًىْظاا اثٍخشسابا حأریشست دساحَج  يضاًأ . اىخحنٌ ٗبعذ قبو اىَْظٍ٘ٔ ىٖزٓ ًىعاا كىسي٘ٗا

 اىَسخ٘ٙ طشيقت حطبیق طشيق عِ رىل إىٚ بالإضافت. ىٖا اىَضاف اىخحنٌ ىعَو اىَزاىیت اىظشٗف ىَعشفتىَْظٍ٘ت منو ا

سخْخضت بطشيقت ىَاىخقشيبیت ا هىحي٘اىيخأمذ ٍِ صحت ٗ. اىَخَذ اضافت بذُٗ الاصيٚ اىْظاً اسخقشاس ىذساست اىط٘سٙ

 ثبذأقذ ٗبعت اىشاىشحبت ام٘حا ٍِ -ّشسشيقت ط باسخخذاً ٗرىليت دىعذا هىحي٘ا ٗبیِ بیْٖا ٍقاسّٔ عَو حٌ اىَخعذدة الأصٍْت

 .ٗأخیشا حٌ عَو ٍقاسّت بیِ ّخائش ٕزا اىبحذ ٍٗا حٌ ّششٓ فٚ الابحاد اىسابقت . بیْٖا اً صذ ةصیذ سبصت حقادسّت سىَقاا ٕزٓ
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