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ABSTRACT

This paper provides the estimation and the test procedures for the measures of association in the correlated binary data

associated with covariates. The generalized linear model (GLM) using the serial dependence and the developed alternative

quadratic exponential form (AQEF) procedures are employed for the trivariate binary correlated outcome variables. The log-

odds ratios, as measures of association, are estimated and the appropriate tests are suggested. For comparison between the

two procedures, we used the simulation study and an application to an ecology problem which involves the estimation of the

measures of association and their tests. The over-dispersion criteria is investigated for these procedures. Finally, the deviance

and scaled deviance are used as tests for the goodness of fit of the model to determine the best procedure.

Keywords: Trivariate Bernoulli Distribution; Markov model; Generalized linear model; Deviance; Likelihood ratio test;

Maximum likelihood estimators, Alternative quadratic exponential form.

1 INTRODUCTION

The dependence between the response and
the explanatory variables is of interest increas-
ingly in the recent studies specially with corre-
lated outcome variables associated with covari-
ates. A quasi-maximum likelihood estimate, also
known as a pseudo-likelihood estimate or a com-
posite likelihood estimate, is an estimate of a pa-
rameter 0 in a statistical model that is formed by
maximizing a function that is related to the loga-
rithm of the likelihood function, but is not equal
to it. In contrast, the maximum likelihood esti-
mate maximizes the actual log-likelihood func-
tion. In likelihood analysis we must specify the
actual form of the distribution. In quasi-likeli-
hood we specify only the relationships between
the mean of outcome and covariates, and be-
tween the mean and the variance functions. By
adopting a quasi-likelihood approach and speci-
fying only the mean-variance structure, we can
develop methods that are applicable to several
types of outcomes variables. To use the regres-
sion model using the quasi-likelihood method,
we must use the link function as a transform be-
tween the natural parameters and regression pa-
rameters. These link functions are different from
case to case according to the distribution of cor-
related outcome variables.

In this study, our focus is on the trivariate
case for the correlated binary data because few
authors are devoted with the trivariate case. Is-

lam et al. [5] developed a new simple procedure
to take account of the bivariate binary model
with covariate dependence. This model is based
on the integration of conditional and marginal
models. Qagqish [7] presented a family of mul-
tivariate binary distributions for simulating cor-
related binary variables with specified marginal
means and correlations. Zhao and Prentice [12]
discussed the pseudo-maximum likelihood for
analyzing correlated binary responses. Their pa-
rametrization is based on a simple pairwise mod-
el in which the association between responses is
modeled in terms of correlations. Also, Heagerty
and Zeger [3], Heagerty [4] presented the con-
ditional log-odds interpretation, and developed
a general parametric class of the serial depen-
dence models that permits the likelihood based
marginal regression analysis of binary response
data. El-Sayed et al. [2] introduced an alterna-
tive quadratic exponential form (AQEF), in the
bivarite case, to make the quadratic exponential
form, which is presented by Zhao and Prentice
[12], more realistic in terms of defining the un-
derlying pseudo-likelihood function, by modify-
ing the normalizing procedure in the bivariate
case.

In this paper, the major work is modeling the
GLM and the AQEF procedures associated with
one covariate. These procedure can be extended
for more than one covariate without any loss of
generality, McCullagh and Nelder [6]. The gen-
eralization of the association parameters can be



2

done with specified link functions for the trivari-
ate correlated binary responses variables. Hence,
the bivariate AQEF will be extended to the tri-
variate case in simple form also by modifying
the normalizing process. Also, to compare with
the AQEF procedure for the log-odds ratios as
measures of association and the regression pa-
rameters, we will use the GLM procedure using
the serial dependence and the first-order Markov
model. Section (2) presents the trivariate Ber-
noulli distribution, namely the joint probabili-
ties and the log-odds. Sections (3) presents the
trivariate AQEF procedure and section (4) pres-
ents the trivariate GLM procedure using serial
dependence criteria. Each section contains the
estimation of natural parameters, the estimation
of regression parameters, the testing hypothesis,
the goodness of fit of the model and over-disper-
sion property. Finally, Section (5) displays the
numerical examples, using R program, for the
simulation study and an application to an ecol-
ogy problem using the Hunua Ranges Data.

2 Trivariate Bernoulli Distribution

In this section, we will present the joint prob-
ability function and the log-likelihood function
for three correlated binary variables having the
Bernoulli distribution. In this case, we can ex-
tend for the trivariate Bernoulli distribution. If
Y,,Y, and Y, have a Bernoulli marginals, each
of which takes the value of either 0 or 1, then
it must be that (¥;,Y,,Y;) has only eight possi-
ble values (0,0,0),(0,0,1),(0,1,0),(0,1,1) and
(1,0,0),(1,0,1),(1,1,0),(1,1,1).

For the trivariate binary data with correlated
binary outcomes, the joint mass function is

3
I I"’j

J=1
X ... X pi1y

ﬁd v ylﬁd v
VACIYS IS =Po{);l ><P|00j:2
(1
where, Py =P &1 =1Y;=/Y3=3 are
the joint probabilities.
The corresponding log-likelihood function of

the joint mass function (1), for n observations,
is
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Let us define the following parameters using
the relationships between the expectaions and
both of the marginals p;, the joint probabilities
Dj & Py and the covariances o; as:

p=EY) p,=EY,) p,=EY) ¢ =1-p, ¢,=1-p,, ¢;=1-py,
EXY)=p,, EQY)=py, ELGY)=p,, EQLY)=ppy,

Oy =Py ~DiPys Oy =Dy —PiP3s O3 =Py —DaPss

K=E[(Y, = p 0 Y, = 0 ¥s = P3)]= Py = Py P2 = Py Pr = Py P3 2P PP,

3)

Note that: if o, =0, then the variables Y,

and Y, are independent, also if o; =0, then the

variables ¥, and Y, are independent, and finally

if o, =0, then the variables Y, and Y, are in-

dependent. For example, using the expectaion
property, in the bivartiate case, we have:

-pli Y, -p)l=0, =EY,)-pEX,)-p,EY,)+p,p,

=Dy —2p\py PPy =Py PPy

Then, Teugels [8] used this property to pres-
ent the joint probabilities for the three correlated
binary variables as:

Pooo = 919295 + 450, +4,03 +q,0; —K
Poot = 419205+ P30y — 4,03 —q,0; +K
Poio = 41P293 — 430, + POy —q,03 +K
Poii = 41P2P3 — P30y — P20y +¢,0;, —K
Pioo = P19>95 — 450, —q,05 +po; +K
Pio1 = P192P3 — P30y +4,05 —po; —K
Piio = P1P295 +4;0, —P,0y —po; —K

+p,0y +po; +K
“
The next sections explain the parameters es-
timation and test procedures for the AQEF and

the GLM procedures in the trivariate case as fol-
lowing:

3 Trivariate AQEF Procedure

P = PP2P3t P30,

In this section, we will extend the bivariate
Alternative Quadratic Exponential form (AQEF)
which is proposed by El-Sayed et al. [2] to the
trivariate case. This function reformulates the
joint mass function (1) in simple form. So, the
joint mass function (1) for the three correlated
binary variables Y},Y, and ¥, can be written
in the alternative quadratic exponential form as:
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S vy 33) = exp{ 0] + 1,0, + v305 + v o0y
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where, 6, =log ! , 0, = logL,
1-p, 1-p,
0, =log " P3_ are the natural parameters.

1=p . .
The associated 3pararneters in the function (5)
can be written as:
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If P(,|Y,Y;)=P (Y,|Y;), this means
that ¥, and Y, are conditionally indepen-
dent, [1], for given Y; . This can be written as

Py -P3 = Py » Where

o
_ x
Py =—F—"——
N

are the correlation coefficients, [8]. To obtain
the normalizing term, c¢(6,y), in the joint func-
tion (5), we can use the probability constraint:

Z Z Zf()’p)’p)@) =1

hal :OJ’Z :OJ’3 =0

. J>ke{1,2,3},

(6)
In this case, the normalizing term can be ob-
tained as

49| +92 +y¥3 n 661 +63 +yy

0 0 0
clop)=l+el+e?+e3 +e

(_gy92+93+y/2 +er9]+r92+93+y/1 Yy Wy Vi3
b

Simplifying the results of Tuegels [8], for the
joint probabilities (4), we can use the joint func-
tion (5) to obtain the joint probabilities as:

P =1%=07,=) P(¥=0Y,=0%=)

1

1
cO,p)’

Pooo =

Poor = exp(6; —log[c(6,y)]),
Poio = exp(8, —log[c(,y)]),
Poit = exp(6, + 65 +y; —log[c(6,y)]),
Pioo = €xp(6, —log[c(6,y)]),
Pioi = exp(6, + 65 +y; —log[c(6,y)D),
Piio = exp(6, + 6, +y, —log[c(8,¥)]),

P =exp(6, + 0, + 6, +yy +yy vy, +Wiy _IOg[C(Q’%’éi)-

As shown from the previous equations (8),
the joint probabilities can be obtained easily
rather than Tuegels [8], in the the equations (4).
The next subsection presents the parameters esti-
mation of the AQEF procedures as follows:

3.1 Natural Parameters Estimation

Using the joint mass function (5), the log-
likelihood function, for n observations, can be
written as

(O,y) = Z{YUQ 12,0, + 3,05 + Y, Vo0 + VYW
i=1

+ V2 VW H WiV —logle(0,y] },

)

Where the normalizing term, c(6,y), is
defined as shown in (7). The first derivatives
for the log-likelihood function (9) with respect
to 6,,60,,0,,v, ,w; ,w, and v ,;, and put it
equal to zero, are
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O, +6,+y. O, +0,+0,+ys Wy +y, +W
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1

c(0,y)

n 891+62+93+y/2 g Yy Y o3

ol(y.;0,
(yl v) Zylly2!y3l Z
OV 153 i-1

(10)
Solving the estimating equations (10), nu-
merically, we have the estimates of natural
parametrs, 0,,60,,0,,W, W, ./, and ¥,,;.
Then, we can use these estimates to obtain the
estimates of the joint probabilities in the equa-
tions (8). The number of natural parameters in
this procedure, AQEEF, are 14 parameters.

3.2 Regression Parameters Estimation

We can use the next link functions, which are
used to transform the natural paprameters to the
regression parameters, to specify the regression
model as a function of regression parameters as
following:

+ VY30, X+ Vo vs0s X+ vy, via, ' X

c(0,y)
N ot ot = (x® o)
N = = o)

N =T = «F)

N = = o)

%3

%S

%l

:QEAX; “3|:(QB ‘%} )

=‘QSAX} QS‘: (‘%E “I )

:Q]AX) ‘“]lz (Qﬂ) “I )

P i

w_ s

A

Then, the joint function (5), using the regres-
sion parameters, is become:

Sy lx)= exp{ylﬁl'x+y2,82'x+y3,83'x+y1y2al'x

—log[e(B,a] §,

(12)
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c(f,ax)= 1+ +e 15" +e

Lo x4y ' x+ay'x
2 3 3 +e

Ly 'x+ 5 "x+a 'x Py 'x+ 2 'x+a, 'x
1 2 " 4 e 1 3 2

,81 'x+,l32 'x+ﬂ3 'x+a1 'x+a2 ')c+0(3 'x+a4 'x

+e

Consequently, the log-likelihood function, for 7 observations, can be expressed as:

LB, x)= Z{yliﬂlv’x + V0,0 X+ V3,0 X + v 100" X+ Y vy x
it

Q—?%)Zl.y&.a; X+ v,V Yy, x —logle(S, a] } 5

By'x By'x+py x+ay'x i eﬁl 'x+ﬂ3'x+a2 "x n eﬂ] 'x+ﬂ2'x+ﬁ3'x+al xta, x+os'xtay'x

+e

)x=0

op,

o B,a) _
B,

ol B,a) _
op;

oN(B,a) _
oa,

ol(B,a) _
oa,

olp,a) _
oa,

ol(B,a) _
oa,

(B, a) _ Zn:(yr e

c(f,a)

The first derivative for the log-likelihood func-
tion (13) with respect to S, 53,, fs,a,,a,,Q,
and o, and putting these equal to zero, respec-
tively, we have estimation equations:

Solving the equations (14), numerically, we
getthe vectors of estimates f3,, 5,, £, 4, 45, 4
and @,. Then, using the equations (11), we
have the estimates of natural parameters
0,,0,,05,9, Wy W, and ;. The num-
ber of regression parameters in this procedure,

n eﬂ2 "x n eﬂl 'x+ﬁ2 'x+a1'x n eﬁz'x+ﬂ3'x+a3‘x n eﬂl 'x+ﬁ2 'x+/5’3'x+a1'x+a2'x+a3'x+a4'x
Z(y 2 )x=0
i=1 c(B,a)

n e,B3'x n eﬂl 'x+ﬁ3'x+a2'x n eﬁz'x+ﬂ3‘x+a3'x n eﬂl 'x+ﬁ2 'x+ﬂ3'x+al "x+ay 'x+ag'x+ay'x
Z(y 3 )x =0
i=1 C(ﬂ, 0()

n eﬂl ‘)c+ﬁ'2 "x+ay'x n eﬁl 'x+py 'x+ﬁ3 "x+a) 'x+ay 'x+og'x+a,'x
Z(yliyZi - )x=0

i=1 C(ﬂa a)

n eﬁl‘x+ﬂ3'x+a2 'x n eﬂl 'x+/32'x+ﬁ3‘x+al‘x+a2‘x+a3 'x+a4‘x
Z(yliy3i - )x=0

i=1 co(pB,a)

n e By'x+ ﬂ3 'x+og'x te By'x+By'x+ ,33 "xX+ay'x+ay 'x+og'x+ay'x
Z(yZini - )x=0

= c(B,a)

n By'x+p, 'x+ﬂ3 xt+ay Xy 'x+ag'xtay'x
Z(yliyZini - )x=0

i=1 c(ﬂa a)

(14)

AQEEF, are 14 parameters.

3.3 Testing Hypothesis for Regression Pa-
rameters

The Likelihood ratio test (LRT) can be used
to test the regression parameters. Approximate-
ly LRT following Chi-square distribution with
one degree of freedom.

We will use the LRT to test the null hypoth-
esis H:a, =0 against the alternative hypoth-
esis [, :a, #0. The LRT can be written as:
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- N N A AR RA A A A .2
LRT—_Q g(yiaﬂlaﬂbﬂbababcﬁ)_f(yiaﬂl:ﬂZaﬂ37a1’a23a39a4] ) Zl
(15)
Also, we can use the LRT to test the null hypothesis H : ¢, = 0 against the alternative hypothesis
H,:a, #0.The LRT can be written as:

- BB RS 5 BAR R AL LS .2
LRT = =R U(y;; B Py Pss @15 3, 0) = L(y;s By, Bos By, g, ] 0 1 (16)
Similarly, we can use the LRT to test the null hypothesis H, : &; = 0 against the alternative hypoth-
esis H, :a; # 0. The LRT can be written as:

LRT ==L U(y;; B, Bo> Py, 41,0y, ) = U3 P15 B Pys Oy G, O, ) le (17)
Finally, we can use the LRT to test the null hypothesis H, : o, = 0 against the alternative hypoth-
esis H, :a, #0. The LRT can be written as:

- B R R s AR R A A A A .2
LRT ==R U(y; B, Bo, P> 0, @ 05) = Uy B, B, B, a0, 05,0, 0 7 (18)
The estimates of f3,, 5,,f,,a,,&,,0,,d, under H can be obtained by solving the equations
(14) numerically.

3.4 Goodness of Fit of Model

The deviance can be used to determine the goodness of fit of the model. We can define the deviance
function as:

D(y;0.9) =2y, y)- .00 = 12, (19

where p is the number of estimated regression parameters,

Uy;;0,p) = Z(yliel + 35,0, + 13,0, + Vi Wy Vv Y YsWs VYVl —logle(0,y] )’
is the log-lli:f(elihood function as a function of the natural parameters,

C(é, l/;) =14 eél + €é2 4 eé3 + eél+é2+z/}2 + eé1+é3+xﬁ3 + e§2+é3+y}3 + eél+é2+é3+x/72 Py FW3 a3 .

is the normalizing term as a functtion of natural parameters,

Ly y)= Z(J’n + Vot Yy F VYo F VuVa F Vo Ve + ViV Vs —logle(y;, v ] )’

is the log likelthood function as a function of y.

and

Ni

Y1itY2iti Y1itY3itriY3i +ey2i+y3i+y2iy3i

Vo Y3, Yo
+e? +ed te 2t e
Y1itYoitY3; vV VoitV1Y3i Y273t V1iY2iY3i

C(yiayi) =l+e

is the normalizing term as a functtion of binary data y.
3.5 Over-Dispersion Criteria

The over-dispersion is happened when Var (Y) > Var (& ). So, the over-dispersion parameter ¢ can
be obtained from the relation Var(Y') = @Var(gs) . The estimation of dispersion parameter, ¢,
can be used as a good measure for the over-dispersion criteria.

So, let us define:

Var(Y,)  Cov(Y,.Y,) Cov(}.Y,)
Cov(Y,. ;) Var(Y,)  Cow(Y,.Y,)
Con(Y,.Y,) Cow(¥,.Y,) Var(Y,)

b

Y1 P
Y=\Y, |, p=|p,| Z=
Y, p
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The quantity (Y —p)S (Y —p) follows
the non-central ;(2 distribution. Under indepen-
dence, the estimator of dispersion parameter ¢
is

. 1 L (yj _ﬁj)z
Var(p;)

where p is the number gfgecstimated regres-
sion parametersand p =——0, J= 1,2,3
are the estimated marg1nal]s+ e’

>

(20) TP =1 j=1

The value of ¢ is close to 1, for the Bernoul-
li data, may reflect absence of over-dispersion.

Also, we can use the scaled deviance function

Scated D~ POs0¥) oy

as a measure of the goodness of fit of the
model.

The lower value is good, and surely it is bet-
ter than the deviance function (19) and both of
them equals when ¢=1.

4 Trivariate GLM Procedure

In this section, we will use the serial depen-
dence property using the first-order Markov
model. According to the conditional logs-odds
interpretation of Heagerty and Zeger [3], Hea-

gerty [4].

The conditional probability of (¥, = y,) given that (¥; = y,) is:

P(Y,=y,|Y,=y)= [

Also, the conditional probability of (¥, = y,) given that (¥, = y,) is:

P (Y, ZY2):[

ZJ’3|Y2

9
2Y2 ] [ l-l-gjﬂy2 ]yl Xel//]z ylyz, 22)
] [ 1+gf+; ]2 <e”2 2 (o)

Using the equations (22), (23) and the followmg serlal dependence relationship:

Sy, y3) =P, =y, | Y, =y,)xP(Y, =y, | Y, =y)x P, =) (@4

we can obtain the joint mass function for the correlated binary variables, 1,Y, and Y;, in the expo-

nential family form, as:

S Y.,s) =exp{91y1 +0,y, +0,y; +wy ¥y, +w; ¥,y —logll +egl]_10g[l +662]
—logfl +eg3]—y1(log|_1 + ™ ]1-logll +eg2]

—y,(log] +e”"3 1-logl +e”} }

4.1 Natural Parameters Estimation

(25)

In this section, we will present the estimation of parameters of the trivariate Bernoulli model.

For n observations, we can get the log-likelihood function as:

00,y)= 2{91)’11' + 0,3, + O3 Wy Y, Yo HW5 Yy vy —logl +egl]_10g[l +€62]

i=1

—logl +e”]-y,(log] +e™" ]-log] +e)
— y,(logl +¢™"3 J-logl +¢”) }

Taking the first order derivatives for (26) with respect to 6,,6,,6,,y, and y, , and putting equal to

(26)

zero, we have the estimating equations:
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6’1

OV =3 (3~ =0

49+y/ 6.
aggf;;j’) T L e T
5g(¢9 v) Z( . ) Z)/z( 6'93://2 B e =0

00, i Mte®"3 14>

@7 8(0.y) _ 3 e?r

) W—Z)’u)’zz Zyll( T )=0

n 6’+w
%’;ﬁ) - izﬂ:yziy3l Zy2l( 393*1’3 )=0

Solving the estimating equations (27), numerically, we have the estimates 6,,0,,6,,¥, and Vs
The number of natural parameters in this procedure, GLM, are 10 parameters.
4.2 Regression Parameters Estimation

We need to study the effect of covariates on the joint function (25) which can be expressed as
S,y x)= exp{ﬁl'y a2 N ) 52 N S o S A T
+a;'y ,y; —logll + eﬂl'x]—log[l +eﬂ2'x]

—logll + e 1—»,(logll + e’ 1—logll + eﬁz'x]

— »y(logll +e”"" " ]~ logll +e™") §
where, the natural parameters (6,,6, and 6,) and the regression parameters (f3,, 5,, f;,, and

as)

are defined as shown in the equations (11). For n observations, we can get the log-likelihood func-
tion as

(28)

5(9#//):2{,5’1'37 1i+ﬂ2'y 2i+183':)? vty vy,
i—1

+ a3y 25)’31 logll + e ] —logfl + e ] ' (29)
—logl +e”31— y,(logl +e&”2"" 1 ] —logl +e”2™)

— v, (logll + e 3" 1 —logll +e&”™) }
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Taking the first derivatives for (29) with respect to £, 5,, 5, @, and ,, and putting these equal
to zero, we have

af(ﬁ @) _ Z< ’31""

,B'x ﬁZ'x+al'x
86(,8 @) _ Z( Vai 7‘)’1,-( R ﬁz'x))xzo

1+ q4e

aK(IB a) 'x eﬂ3 x+a3'x e B
ﬁ Z(y3l y21 (1 + eﬂ3'x+a3'x ﬂ3'x ))x - O

af o eﬂz x+oy
('8 ) Z(ylzyZl yll W)x - O

af o eﬂ3 x+ag'x
('B ) _ Z(J’2IY31 Yai Baixtay'x )X =0
1+ 73

Solving the equations (30), numerically, we get the estimates f,, 5,, f;,Q, and &, .
The number of regression parameters in this procedure, GLM, are 10 parameters.
4.3 Testing Hypothesis for Regression Parameters

We can use the LRT to test the null hypothesis H,:a, =0 against the alternative hypothesis
H :a #0.

The LRT test can be written as:
LRT == 0(3;; By: Bos B3> @) — (3,3 Bys s 5. G B5) 1 A7 (€2))

Also, we can use the LRT to test the null hypothesis H, : &; = 0 against the alternative hypothesis
H, o, #0.

The LRT test can be written as:

LRT =R (v Br. Bos B @) — (i3 B fos B @) 1 28 (32)
The estimates 181 , ﬂz , ,33 ,0,,0, under H, can be obtained by solving the equations (30) numeri-
cally.
4.4 Goodness of Fit of Model

The deviance can be used to determine the goodness of fit of the model. So, we can define the devi-
ance function as

D(y;;0,9) =2 (v, y)— (¥, 0.9 xl,, (33)
where,

E(J’ioyi)zz‘,{yli+y2i+y3i+y1iy2i+y2iy3i_logﬂ +eyli]_10g[1 +ey2[]_10g|_1 +ey3i]

i=1

and vy, (logll +e"2"172 | —log]l +e’?) — y,,(log]l +&"¥"2"% —log]l +e"*} },
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g(yi;é’l/;) = Z{élyli + é2y2i + é3y3i Wy ViV t W5 Vo vy —logll +e‘91]_10g[1 +€62]

i=1

~logl +¢”1-y, (logl +e¢™" 1-logl +¢*} —y,,(logl +e™"2 ]-log] +e”) }.

Also, the scaled deviance as a goodness of
fit of the model can be used, using the equation

210).
4.5 Over-Dispersion Criteria

The estimator of dispersion parameter ¢ can
be used as a good measure of the over-dispersion
as shown in (20).

In the next section, we will use numerical
examples to explain the differences between the
AQEF and GLM procedures, using the R pro-
gram, for the simulation and application studies.

5 Numerical Examples

In this section, we have two subsections, the
first one explains the simulation study using the
generation of multivariate binary data, and the
second one demonstrates the application study
using the Hunua Ranges Data on an ecological
field ,Yee [10,11].

5.1 Simulation Study

In the simulation study, we use the bina-
rySimCLF package of the R program to gen-
erate the multivariate binary data with ex-
changeable correlation matrix with param-
eter value , p=0.25, and the marginals
(p, =0.30, p, =0.40, p, =0.20, p, = 0.30)
. The first three columns from the generated data
are specified to the correlated binary responses,
( ¥,,Y, and Y)). The fourth columns is specified
to the explanatory variable X . In this study, we
will use large sample size, n=1500.

The estimates in Table (1) are obtained for
the GLM and AQEF procedures, using the BB-
package of R program [9].

Table (1) explains the results for the AQEF

and GLM procedures as follows:

Hence, the LRTs will be compared with
7°(0.05,1)=3.8415.

So, we can summarize the results from Table
(1) as following:

Table 1. Results of the AQEF and GLM procedures

Estimate AQEF GIM Estimate AOEF GIM
N 0.2281 0.3080 R 0.7762 0.7949
Dl an
o 0.3357 0.3605 o -0.4986 -0.3169
D4 a,

B 0.1130 0.1608 B 1.0296 -
D, A,
‘AJ -1.7228 -1.2417 = -0.3511 -
S, a;
L 1.3319 1.2417 R 0.8621 0.6785
B, a,
o -0.9193 -0.7949 A‘" -0.3803 0.0268
£ Qa4
v 0.7251 0.6896 A -0.3513 -
L. a,
. -2.2336 -1.8099 R 0.7024 -
A ay
N 0.4990 0.4665 R 3.0425 2.1492
B, ¢
T Scaled Deviance 28 3746 14.0415
Log likelihood Value -847.8763 -854.743
8.0801 11.3126
LRT(H : . =0)
v ' 5.9868 -
LRT(H : a, =0)
v 6.0343 17.5674
LRT(H : o, =0)
v - 0.5107 -
IRT (H : &, =0)
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For the AQEF procedure:

The LRTs demonstrate significant association
between the correlated binary pairwise variables,
associated with explanatory variable, X . How-
ever, there is no significant association between
all the correlated binary variables. This indicates
that there is a pair-wise first-order dependence
between the pairs of binary variables but the log-
odds ratios for three Bernoulli variables demon-
strates that there is no second order association
among the three Bernoulli outcome variables.
The estimate of dispersion parameter reflects the
over-dispersion case (¢? =3.0425>1).

The scaled deviance reflects the goodness of
fit of the model,

[Scaled deviance
=28.3746 < x*(0.05,n— p = 486) = 538.393
,p=14].

For the GLM procedure:

The LRTs demonstrate significant association
between the binary variables ¥, and Y, and sig-
nificant association between the binary variables
Y, and Y;, both are associated with explanatory
X . The estimate of dispersion parameter reflects
the over-dispersion case (¢3 =2.1492>1).

The scaled deviance also reflects the good-
ness of fit of the model,

[ Scaled deviance
=14.0415 < x°(0.05,n— p = 490) = 542.604
,p=10].
The regression models are shown below as
follows:

For the AQEF procedure, we have the re-
gression model

log—2u = _17228+1.3319x,
1-py,

log—22 = _0.9193+0.7251x,
1-py

log—22 = 22336+ 0.4990x,
1-p;,

v, ; =0.7762 - 0.4986x,
v, =1.0296-0.3511x,
v, ,; =0.8621-0.3803x;,
Wiy = —0.3513+0.7024x,

(34

Similarly, for the GLM procedure, we have
the regression model

log—2i = 12417 +12417x,
1-p,

log—22— = — 07949 + 0.6896x,
1-p,,

log—24 = 18099 + 0.4665x,
1-p, (35)

0, =0.7949 - 03169x,
0, =0.6785+0.0268x,

5.2 Application Study

Source: R-program (Dr Neil Mitchell, Uni-
versity of Auckland ) and Yee [10,11].

These data were collected from the Hunua
Ranges, a small forest in southern Auckland,
New Zealand. At 392 sites in the forest, the pres-
ence/absence of T plant species was recorded,
as well as the altitude. Each site was of area
size 200 m’. The Hunua Ranges Data frame
has (392) rows and (18) columns. The Alti-
tude represents the the continuous independent
column, and the (cyadea, beitaw and kniexc)
columns are correlated binary responses (pres-
ence=1, absence =0) for the T plant species.
For these data, we use the columns (cyadea,
beitaw and kniexc) as the dependent correlated
binary variables Y},Y, and Y, respectively. On
the other hand, we will use the column altitude
(meters above sea level), as the continuous ex-
planatory variable X .

The estimates of the regression parameters in
both the procedures, as explained in Table (2),
can be obtained by solving the estimating equa-
tions using the BB-package in R program [9].

Table (2) explains the results for the AQEF

and GLM procedures as follows:

Hence, the LRT’s will be compared with
7°(0.05,1)=3.8415.

So, as we observe from Table (2), we have
the estimates of regression parameters and the
tests which are based on the Hunua Ranges Data
on ecological observations.

For the AQEF procedure:
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Table 2. Results of the AQEF and GLM procedures

Estllnate AQEF GILM EstlAmate AQEF GIM
D 0.3415 0.3416 a, -0.1245 -0.0493
D, 0.4061 0.3960 a, -0.0014 0.0029
D 0.5565 0.5575 a, -0.1180 -

B, -0.2910 -0.5747 é, -0.0007 -
B -0.0023 -0.0005 ay 0.0443 0.6033
By -0.5336 -0.8459 a, 0.0006 -0.0007
B, 0.0009 0.0026 2y 0.0438 -
Jia -0.0139 -0.1326 7, 0.0053 -
Jia 0.0015 0.0023 ¢ 1.8424 1.8324
Scaled Deviance 248.8728 185.1379
Log likelihood Value -762.1282 | -752.3798
LRT(Ho: % =0, 34.6890 19.8268
LRT(H0: % =0, 2.7690 -
[RT(Ho. % =0, 6.4283 21.5709
LRT (Ho: % =0, 23.9190 -

The LRT’s demonstrate significant associa-
tion between the binary variables Y, and Y,,
also no significant association between the bi-
nary variables ¥, and Y;, both are associated
with explanatory variable, X . It is also evident
that there is significant association between the
binary variables Y, and Y}, also significant asso-
ciation between the binary variables ¥,,Y, and
Y., associated with explanatory variable, X
. The estimate of dispersion parameter reflects
the over-dispersion case (¢3 =1.8424>1). The
scaled deviance reflects the goodness of fit of the
model,

[ Scaled deviance
= 3188138 < X, (0°02° % — D =318) =333'939
, p=14].

For the GLM procedure:

The LRT’s demonstrates significant asso-
ciation between the correlated binary variables
Y, and Y, and significant association between
the correlated binary variables Y, and Y, both
are associated with explanatory variable, X
. The estimate of dispersion parameter reflects
the over-dispersion case (¢3 =1.8324>1). The

scaled deviance also reflects the goodess of fit
of the model,

[ Scaled deviance
=185.1379 < 42(0.05,n — p = 382) = 337.700, p=0 ]
. The regression models can be shown as fol-
lows:

For the AQEF procedure, we have the re-
gression model:

log—2t— = -0.2910-0.0023x,
1-p,

log—22— = ~0.5336+0.0009x,
1-p,,

log—2%— = -0.0139+0.0015x,
1-p,,

v, , =—0.1245-0.0014x,
v, , =—-0.1179-0.0007x,
v, . =0.0443+0.0006x,
W0y, = 0.0438+0.0053x,

(36)

Similarly, for the GLM procedure, we have
the regression model:
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log—21 = —0.5747 - 0.0005x,
— P
log—22— = —0.8459 +0.0026x,
1-p,,
log—23 = _0.1326 +0.0023x,
(37) 1-p,,

W, ; = —0.0493 +0.0029x,
v, , = 0.6033-0.0007x,
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