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ABSTRACT
The research introduces a general analytical and computational technique for satellite-to-satellite visibility. The effect of 

earth’s oblateness and drag force were taken into account.The Visibility function in terms of the orbital elements of the two 
satellites and the time were derived. The rise and set periods of the satellites are determined through the sign of the visibility 
function. Numerical examples were worked for some satellites. 

Keywords: Visibility function – line of site- - rise and set times-Earth oblateness- Drag force.

1. INTRODUCTION

The rise/set problem may be defined as the 
process of determining the times at which a 
satellite rises and sets with respect to a ground 
location. The easiest solution uses a numerical 
method to determine visibility periods for the 
site and satellite by evaluating UK position vec-
tors of each. It advances vectors by a small time 
increment, ∆t, and checks visibility at each step. 
A disadvantage of this method is the computa-
tion time, especially when modeling many per-
turbations and processing several satellites. Es-
cobal [1], [2] proposed a faster method to solve 
the rise/set problem by developing a closed-form 
solution for unrestricted visibility periods about 
an oblate Earth. He assumes infinite range, azi-
muth, and elevation visibility for the site. 

Escobal transforms the geometry for the sat-
ellite and tracking station into a single transcen-
dental equation for time as a function of eccen-
tric anomaly. He then uses numerical methods 
to find the rise and set anomalies, if they ex-
ist. Lawton[3] has developed another method to 
solve for satellite-satellite and satellite-ground 
station visibility periods for vehicles in circu-
lar or near circular orbits by approximating the 
visibility function, by a Fourier series. More 
recently, Alfano, Negron, and Moore[4]derived 
an analytical method to obtain rise/set times of 
a satellite for a ground station and includes re-
strictions for range, azimuth, and elevation. The 
algorithm uses pairs of fourth-order polynomials 
to construct functions that represent the restrict-

ed parameters (range, azimuth, and elevation) 
versus time for an oblate Earth. It can produce 
these functions from either uniform or arbitrarily 
spaced data points. The viewing times are ob-
tained by extracting the real roots of localized 
quantic.

Palmar [5] ,  introduced a new method to pre-
dict the passes of satellite to a specific target on 
the ground which is useful for solving the sat-
ellite visibility problem. He firstly described a 
coarse search phase of this method including 
two-body motion, secular perturbation and at-
mospheric drag, then he described the second 
phase ( refinement), which uses a further devel-
oped controlling equation F(α) = 0 based on the 
epicycle equations.

In the present work, a fast method for satel-
lite-satellite visibility periods for the rise-and-set 
time prediction for two satellites in terms of clas-
sical orbital elements of the two satellites and 
time were established. The secular variations of 
the orbital elements due to Earth oblateness and 
drag force were taken into account in order to 
consider the changes in the nodal period of satel-
lite and the changes in the long term prediction 
of maximum elevation angle. In the following 
description the formulae for satellite rise-and-set 
times of the two satellites were introduced. The 
derived visibility function provides high accu-
racy over a long period. 

2. VISIBILITY ANALYSIS

The location of a satellite is determined by the 
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Kepler’s laws. A set of six orbital parameters[a, 
e, i, , ,f] is used to fully describe the position 
of a satellite in a point in space at any given time: 
semi-major axis a, eccentricity e, inclination of 
the orbit plane i, right ascension of the node Ω, 
the argument of perigee ω, and true anomaly f. 
The above parameters are shown in the Figure1. 

The links between two satellites are deter-
mined by the visibility analysis presented as fol-
lows:

Referring to Fig. 1, the position vectors of 
satellites 1, and 2 with respect to the ECI coor-
dinate system are r1 and r2. The position vector 
from satellite 1 to satellite 2 will be denoted by 

→→→

−= 12 rrρ
Let h = OP ∆+== eaOPh , be the perpendicular 

from the dynamical center of the earth to the 
range vector

→

ρ , cutting the earth surface at Q 
and the range vector at P , where ae is the mean 
radius of the Earth, and Δ is the thickness of the 
atmosphere above the surface of the Earth to P. 
From the geometry of Fig.1, we have the follow-
ing relations:

Of                                                           (2.1

On the other hand, the area can be calculated 
from the relation:
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From (1) and (2), we conclude that:
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where ψ,  is the angle between r1 and r2 of the 
two satellites.

The condition for direct visibility between 
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putting
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After the determination of the locations of 

satellites at any time in the space, they can only 
achieve visibility when they are both above the 
tangent plane to the earthsurface. The extreme 
situation is that both of them are in the tangent 
plane.  

When  Δ > 0, the two satellites can achieve 
visibility. Otherwise, there is no visibility. 

where 
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Unless there’s an impact between the two 
satellites, the dominator will not equal zero. 
The sign of  associated with visibility can be 
obtained as: 

Positive value of ⇒  Direct line-of-sight 

Negative value of ⇒  non-visibility

3.Coordinate Transformation.

The coordinate transformation presented here 
is the passage from the peri-focal coordinate sys-
tem (P Q W) with unit vectors P Qand


to the 

geocentric–equatorial system (X Y Z) with unit 
vectors (I J K). Here and  are the unit vec-
tor sin the orbital plane of the satellite, where 
originated from focus towards the perigee of the 
orbit and is advanced to  by a right angle in 
the direction of motion. In the peri-focal coordi-
nate system, we have:

( ) 2,1,
0

=















= ir i

i

PQWi η
ξ

                           (3.1)

where iiiiii frfr sin,cos == ηξ , and 

( )21,
cos1 iii

ii

i
i eapand

fe
p

r −=
+

= , 

pi is the semi-latus-rectum.

In order to obtain the position vectors in the 
geocentric equatorial coordinates, we rotate the 
peri-focal coordinate system through the follow-
ing rotations (Vallado,2007)[6]:

( )[ ] ( )[ ] ( )[ ]ω−−Ω−= 313 ROTiROTROTrIJK
               
(3.2)

So that the transformation matrix will take 

hrrSOSTriangleofArea ⋅−= 2121 2
1  hrrSOSTriangleofArea ⋅−= 2121 2

1 

hrrSOSTriangleofArea ⋅−= 2121 2
1  Ψ=∧= sin

2
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the form:
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Now, we can write           
21412321221121 ηηξηξηξξ AAAArr +++=⋅ 

,                   (3.4)

where

  212 PQA


⋅= ,  , 214 QQA


⋅=        (3.5) 

Substituting Equations (3.5), using the ele-
ments of the transformation Equation (3.3)  into 
Equation (3.4) we obtain
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Hence, the condition of visibility in Eq. (2.5) can 
be written in the form 
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where

)sin()cos()cos()cos( 21112111 ffDffD −Ψ+−=Π γ

4. Perturbing Forces

Here we shall consider the effect of perturba-
tion on the orbital elements due to both the Earth 
oblateness and Atmospheric drag. So, we will 
express the orbital elements of the two satellites 
in the form

( ) ( )Diobliii t σσσσ ∆+∆+= 0)( ,
Where ( ) ( )i iobl D

andσ σ∆ ∆ denote the pertur-
bations in the elements due to oblateness, and 
drag force respectively.

4.1. The effect of Earth Oblateness

Analytical investigation of the oblateness 
effects of a central body on a satellite has 
shown that certain elements, such as  
experience secularvariations (increasing or de-
creasing) from the adopted epoch values and 
periodic variations about these epoch values. 
Other elements such as  and e retain only 
periodic variations, a further distinction is 
made between short period variation and long 
period variations.

The oblateness variations are caused by the 
continuous variance of , owing to the fact that 
the trigonometric functions of  have secular 
variations with period  (Escobal,1965)[2].

The gravitational potential, U, of a satel-
lite including the contribution of J2, is given 
by(Satellites) [7]

( )
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which may be expressed as:

 RV +=Φ 0                                            (4.2)  

where 

V0: is the gravitational potential of purely 
spherical Earth;

R: the disturbing potential due to the Earth 
oblateness;

M = k2 m: the gravitational constant × mass 
of the Earth, 

J2: Coefficient of the 2ndzonal harmonic. 

δ: the satellite altitude.

Using  the relation

)sin()sin()sin( ωδ += fi
The perturbing function takes the following 

form 
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Since we are interested in the secular varia-
tion, so we eliminate the short and long period 
terms from the perturbing function. So, to av-
erage R, we integrate (4.3)  with respect to M 
between zero and 2π . The secular part of the 
perturbing function can be obtained as:
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In order to account for the secular variation of 
the elements, we use the equations of variations 
of parameters (VOP) in the Lagrange’s form 
(Escobal,1965)[2]:
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Substitution of (22) into (23)) yield
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where 3an µ=

To calculate the variations in the parameters 
which experience the secular variations, we find 
that
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4.2. Effects of Drag 

The predominant effect of drag is to shrink 
the orbit and in many cases, cause the satellite 
to reenter the atmosphere and hit the Earth. For 
satellites that are close to the Earth, the possibil-
ity of reentry is important in determining a satel-
lite’s lifetime. 

Drag is a non-conservative force that acts to 
lower a satellite’s orbit (less than 600 km). A sat-
ellite experiences varying effects from drag de-
pending on its attitude . A strong wind is analo-
gous to the density variations in the atmosphere 
(diurnal, solar, and geomagnetic for example).

Drag force is given by(Roy, 2005)[8].

                                      
SScD VVBF ˆ

2
1 ρ−= ,                         (4.10)

Where

( ) Dc CmAB =
is the ballistic coefficient

DC
is the aerodynamic drag coef-
ficient,

mA is the satellite area to mass ratio,

ρ is the air density,

SV
is the velocity of the satellite rela-

tive to the atmosphere

SV̂
is the unit vector in the satellite 

velocity direction
Since the drag is non-conservative force, so 

we will use variation of parameters equations 
(VOP) in the Gaussian form , given in the RSW 
system(Roy, 1988)[9]by:
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(h is the angular momentum).
Then we can write equation (4.14) in the form
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Substituting equation (4.16) into equations 
(4.13) we have the variations of the orbital ele-
ments due to drag
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8 
 

 

Drag force is given by(Roy, 2005)[8]. 
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Where 
( ) Dc CmAB =  is the ballistic coefficient 

DC  is the aerodynamic drag coefficient, 
mA  is the satellite area to mass ratio, 
ρ  is the air density, 

SV  is the velocity of the satellite relative to the atmosphere 

SV̂  is the unit vector in the satellite velocity direction 
 
Since the drag is non-conservative force, so we will use variation of parameters equa-

tions (VOP) in the Gaussian form , given in the RSW system(Roy, 1988)[9]by: 
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and , ,R S and W are respectively, the unit vectors in the radial direction, transverse 

direction, and normal to the orbital plane of the satellite shown on Fig.2.Thus in these 

coordinates, the drag force components will be: 

[ ]0.sin,cos ϕϕ DDD FFF −−=


 

where φ is the flight path angle . 
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Since the drag force oppose the velocity vector. Hence, we need to find the drag 
components in the TNW – coordinate system, where T- axis aligned along the tan-
gent (velocity vector) , N – axis normal to it in the direction of increasing the true 
anomaly, f , and W – axis completes the triad in the positive sense. The relations be-
tween the two systems are given from Fig. 2 , after eliminating the flight path angle 
φ, between them as: 
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We have to express the satellite velocity 2
sv in terms of the orbital parameters, where 

we take the velocity of earth 0Eω = . 

                                              
2222 frrVS
 +=                                       (4.14) 

and we have   
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(h is the angular momentum). 
Then we can write equation (4.14) in the form: 
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Substituting equation (4.16) into equations (4.13) we have the variations of the orbital 
elements due to drag 
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Next, to integrate we must change the independent variable from time to the true 
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The presence of  , means that there are periodic variations. So, again let's change 
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Substituting with (4.21) into system (4.20), 

the first equation gives

        (4.19)

        (4.20)

The presence of  , means that 
there are periodic variations. So, again let’s 
change the true anomaly to the eccentric anoma-
ly, using the transformations

                              
                          (4.21)

                              
                            (4.22)

                             
                   

(4.23)

We can now consider the air density  as:

Hoe /)(
0

ηηρρ −−=                                        (4.24)

where 

 is the air density at perigee,

    is the satellite altitude, 

is the altitude at the perigee, and

    is the scale height. 

Since  er Rη = −   and  

( )0 1 ea e Rη = − −
Then 

( )0 1 (1 cos )r a e ae Eη η− = − − = −
Thus, we can put the density model into the 

form

                                          
)cos1(

0
Eke −−= ρρ                                       

(4.25)

where = eak
H ,

Expanding the density function up to O(k3)

Substituting equation (4.26) into equation 
(4.23) and then into equations (4.22), we can 
calculate the integrations from 0 to 2π, after us-
ing the relation and get the results as:  

            








+++−= −

H
ae

H
eaeeaBa k
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2

2

22
22

44
31ρ           

                                 (4.27)

     

(4.28)

These equations represent the secular chang-
es in the orbit due to drag force

5. ADDING PERTURBATIONS

( )Daata ∆+= 0)(
( )Deete ∆+= 0)(
( )oblt ωωω ∆+= 0)(
( )oblt ∆Ω+Ω=Ω 0)(
( )oblMMtM ∆+= 0)(

6. RESULTS AND CONCLUSION

6.1. Test orbits

We will take as an example the following two 
satellites have the two-line elements are (http://
celestrak.com).

6.2. Numerical results

We apply the above algorithm on satellites to 
get the intervals of visibility between two satel-
lites.

we studied the intervals visibility times for 
about one day ( 1450 minutes ) under forces 
mentioned above and compare between two cas-
es first Oblateness only and second Oblateness 
with drag force

The following table has 15.56 periods of 
short period satellite (EGYPTSAT and TRMM) 
and  shows 38 time intervals of visibility be-
tween two satellites.

The intervals 12, 16, 20, 24, 27, 29, 31 and 
33 started at end of periods and continued to fol-
lowing periods.
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(h is the angular momentum). 
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Next, to integrate we must change the independent variable from time to the true 
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The presence of  , means that there are periodic variations. So, again let's change 
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The presence of  , means that there are periodic variations. So, again let's change 
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(h is the angular momentum). 
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Next, to integrate we must change the independent variable from time to the true 
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We can now consider the air density  as: 
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where  
 is the air density at perigee, 

    is the satellite altitude,  

is the altitude at the perigee, and 

    is the scale height.  
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Thus, we can put the density model into the form 
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Expanding the density function up to O(k3) 
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Substituting equation (4.26) into equation (4.23) and then into equations (4.22), we 
can calculate the integrations from 0 to 2π, after using the relation and get 
the results as:   
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These equations represent the secular changes in the orbit due to drag force. 
 
5. Adding Perturbations 
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*The most of intervals (36) don’t change in 
comparing between Oblateness only and ( Drag 
& Oblateness ), these intervals are same in the 
time of rise and set

*The only two intervals which are intervals 
number (14 and 24) changed between two cases.

*The change in these two intervals is by de-
creasing the interval of visibility according to 
applying the drag force, but this decreases is 
small by amount one minute only in the interval 
of visibility.

*The minute which decreases in the long of 
intervals (14 and 24) is in the end of the interval 
number 14, but at the start of the interval 24.

*The period three has more than seven inter-
vals (5 to 11) and interval number 12 starts in 
this period.

 *After the  interval 38 of visibility in period 
number 14 to the end of the periods there is no 
visibility.

*The difference in start and end of visibility 
intervals was expected, acceptable and  means 
good accuracy for our calculations which be-
come from the changes in perigee and  apogee 
times for the satellites according to applied forc-
es .

*The following table (3) has 14.75 peri-
ods of short period satellite (PROITERES) and  
shows 18 time intervals of visibility between 
two satellites(RS-40and PROITERES)  accord-
ing Oblateness and both of Drag and Oblateness 
together

*There are 14 intervals don’t change in com-
paring between Oblateness only and ( Drag & 

 Table(1): the six Orbital elements of satellites

NORAD Two- Line  ELEMENT Sets
Satellite Orbital Elements

Epoch Year 
& Julian Date i Ω e ω M n (rev/d)

1 – RS-40 82.4736 24.0715 0.0017574 56.7063 303.5694 12.4256967315225.76240299         
2- PROITERES 98.2236 326.0322 0.0013327 111.8177 248.4451 14.7588910715225.75945562        
3- EGYPTSAT 1 98.0526 218.7638 0.0007144 61.2019 298.9894 14.6988765708142.74302347

4 - TRMM 34.9668 53.6865 0.0001034 61.2019 88.9226 15.55875272508141.84184490

Figure 2:visibililty intervals Between EGYSAT1 & 
TRmm under Oblateness

Figure 3:visibililty intervals Between RS-40 & 
Poriteres under Oblateness

Figure 4:visibililty intervals Between RS-40 & 
Poriteres under Drag and Oblateness
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( )Daata ∆+= 0)(  
( )Deete ∆+= 0)(  
( )oblt ωωω ∆+= 0)(  
( )oblt ∆Ω+Ω=Ω 0)(  
( )oblMMtM ∆+= 0)(  

 
6. Results and conclusion 

 
5.1. Test orbits 
We will take as an example the following two satellites have the two-line ele-

ments are (http://celestrak.com). 
  

NORAD TWO- LINE  ELEMENT SETS
Satellite Orbital Elements
Epoch Year & Ju-
lian Date

i Ω e ω M n (rev/d)

1 – RS-40 82.4736 24.0715 0.0017574 56.7063 303.5694 12.42569673
15225.76240299         

2- PROITERES 98.2236 326.0322 0.0013327 111.8177 248.4451 14.75889107
15225.75945562        
3- EGYPTSAT 1 98.0526 218.7638 0.0007144 61.2019 298.9894 14.69887657
08142.74302347
4 - TRMM 34.9668 53.6865 0.0001034 61.2019 88.9226 15.558752725
08141.84184490
 

Table(1): the six Orbital elements of satellites 
 
5.2. Numerical results 
 
 

 
Figure 1:visibililty intervals Between EGYSAT1 & TRMM under Oblateness Figure 2:visibililty intervals Between EGYSAT1 & 

TRmm under Oblateness
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Table(2): shows intervals of visibility (rise-set intervals) and compares between two cases (Ob-
lateness in column three and both of Oblateness and drag column four ) for the 38 inter-
vals of visibility as column two in the 16 periods of TRmm per one day.

Time intervals Oblateness Drag&Oblateness

Period 

of 
TRmm

Rise Set Intervals with 
minutes Rise set

Intervals 
with min-

utes

Start at

20 July 2008

20:12:15.4

1 28 31 3 28 31 3
1

2 74 80 6 74 80 6
3 120 129 9 120 129 9

2
4 166 176 10 166 175 10
5 213 222 9 213 222 9

3

6 225 227 2 225 227 2

21 July 2008

7 259 268 9 259 268 9
8 272 276 4 272 276 4
9 305 314 9 305 314 9
10 318 325 7 318 325 7
11 351 360 9 351 360 9
12 364 -373 9 364- -373 9

4

13 398 407 9 398 407 9
14 410 420 10 410 419 9
15 444 453 9 444 453 9

16
457 -

9
457 -

9
- 466 - 466

5
17 491 499 8 491 499 8
18 503 512 9 503 512 9
19 538 545 7 538 545 7

20
549 -

9
549 -

9
- 558 - 558

6
21 585 592 7 586 592 6
22 595 604 9 595 604 9
23 633 638 5 633 638 5

24
641 -

10
642 -

9
651 651

7
25 681 685 4 681 685 4
26 688 697 9 688 697 9

27
728 -

15
728 -

15
- 743 - 743

828 776 789 13 776 789 13

29
824 - 12 824 - 12

- 836 - 836
930 872 882 10 872 882 10

31
919 -

10
919 -

10
- 929 - 929

1032 967 977 10 967 977 10

33
1015 -

9
1015 -

9
1024 1024

1134 1063 1071 8 1063 1071 8
35 1112 1118 6 1112 1118 6

1236 1160 1165 5 1160 1165 5
37 1208 1212 4 1208 1212 4 13
38 1257 1259 2 1257 1259 2 14
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Oblateness ), these intervals are same in the time 
of rise and set

*The anther four intervals which are intervals 
number (10,11,13 and 17) changed between two 
cases.

*The change in these four intervals is by de-
creasing the interval of visibility according to 
applying the drag force, but this decreases is 
small by amount one minute only in the interval 
of visibility.

*The intervals (10 and 17) are lost thus min-
ute at the end of interval which end earlier under 
effect of the Drag force, to be less than one min-
ute in the interval number 17 after applying the 
Drag force in sated of two minutes before it, and 
two minutes in interval number 10 opposite to 
three minutes without Drag.

*The intervals (11 and 13) start later by one 
minute after applying the Drag force than Ob-
lateness only.

*The periods ( 2upto 4 and 7upto 10) did not 
include any interval of visibility, which repeated 
again by the end of interval 18 in period number 
13 to the end of the periods.

the interval 6 started at end of period number 
5 and continued to following periods.

In general:

*The difference in start and end of visibility 
intervals was expected, acceptable and  means 
good accuracy for our calculations which become 
from the changes in perigee and  apogee times 
for the satellites according to applied forces .

*The more effect of Drag force observed 

Time intervals Oblateness Drag&Oblateness
Period of 

PROI-
TERES

Rise Set
Intervals 

with minutes
Rise set

Intervals with 
minutes

Start at

15 August 
2015

18:13:15.37

1 7 17 10 7 17 10

1
2 25 43 18 25 43 18

3 83 87 4 83 87 4

16 August 
2015

21 July 2008

4 495 515 20 495 515 20
55 518 521 3 518 521 3

6
538 -

71
538 -

71
- 609 - 609

6
7 615 632 17 615 632 17
8 646 653 7 646 653 7
9 663 677 14 663 677 14
10 1090 1093 3 1090 1092 2

1111 1123 1125 2 1124 1125 1
12 1128 1162 34 1128 1162 34
13 1172 1192 20 1173 1192 19

12
14 1196 1239 43 1196 1239 43
15 1242 1247 5 1242 1247 5
16 1250 1266 16 1250 1266 16
17 1287 1288 1 1287 <1

13
18 1300 1310 10 1300 1310 10

Table(3): shows intervals of visibility (rise-set intervals) and compares between two cases (Oblateness in col-
umn three and both of Oblateness and drag column four ) for the 18 intervals of visibility as column 
two in the 15 periods of  PROITERES per one day.
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in the visibility between satellites RS-40 and 
PROITERES than the satellites EGYPTSAT and 
TRMM because the first two satellites at latitude 
which under the effect of the Drag force but the 
EGYPTSAT is at the end of this area.
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