Al-Azhar Bulletin of Science

Volume 25 | Issue 1

Article 11

6-1-2014 Section: Chemistry

SYNTHESES AND CHARACTERIZATION OF COPPER (II) AND PALLADIUM (II) COMPLEXES WITH 2-(ARYLMETHYLENEACETYL)BENZIMIDAZOLE

M. Abdelbaset Chemistry Department, Faculty of Science, Al Azhar University Assiut branch, Assiut, Egypt.

Follow this and additional works at: https://absb.researchcommons.org/journal

Part of the Life Sciences Commons

How to Cite This Article

Abdelbaset, M. (2014) "SYNTHESES AND CHARACTERIZATION OF COPPER (II) AND PALLADIUM (II) COMPLEXES WITH 2-(ARYLMETHYLENEACETYL)BENZIMIDAZOLE," *Al-Azhar Bulletin of Science*: Vol. 25: Iss. 1, Article 11. DOI: https://doi.org/10.21608/absb.2014.25178

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh_Mekheimer@azhar.edu.eg.

SYNTHESES AND CHARACTERIZATION OF COPPER (II) AND PALLADIUM (II) COMPLEXES WITH 2-(ARYLMETHYLENEACETYL)BENZIMIDAZOLE

M. Abdelbaset

Chemistry Department, Faculty of Science, Al Azhar University Assiut branch, Assiut, Egypt.

Author to whom correspondence should be addressed (Baset1002002@yahoo.co.uk)

ABSTRACT

Metal complexes formed through the reaction of 2-(Arylmethyleneacetyl) benzimidazole (L1-L4) with copper (II) and palladium (II) ions were prepared and characterized by elemental analysis, conductance measurements, infrared spectra, electronic absorption spectra, X-ray diffraction and thermal analyses. The 2-(Arylmethyleneacetyl)benzimidazole (L1-L4) coordinate as neutral bidentate ligands. The final product in all the cases of TG thermogram of the complexes was found to be metal oxides. Complexes of copper (II) and palladium (II) with 2-(Arylmethyleneacetyl)benzimidazole in solution were studied by spectrophotometric methods and the formation constants and stioichiometries of the complexes were calculated to be 1:2 (M : L) as calculated by continuous variations and the mole ratio methods. The stability sequence is in agreement with the Irving-Williams rule.

Keywords: Copper (II), Palladium (II), Complexes, X-ray diffraction, Thermal analyses, UV–Vis spectroscopy.

INTRODUCTION

Benzimidazole and its derivatives are interesting heterocycles because of their presence in many medicaments. It has been found that they possess antibacterial, antifungal, antioxidant, antihistaminic, cytostatic, local analgesic, hypotensive antihelmintic, anticancer, antihypertensive, antineoplastic, antiprotozoal, anti-hepatitis B virus and anti-inflammatory activity (1-6). It was confirmed to have a moderate in vitro anti-HIV activity (7, 8). Also Benzimidazole as its 5,6-dimethyl derivative is present in vitamin B12 and related biomolecules and benzimidazole derivatives have found wide uses as antihelmintic agents for both human and veterinary purposes⁽⁹⁾. Benzimidazoles are also used extensively in industrial processes as corrosion inhibitors for metal and alloy surfaces particularly of copper⁽¹⁰⁾ and ion exchangers ⁽¹¹⁾.

Complex compounds of transition metal ions with benzimidazole and substituted compounds of these ligands have been studied extensively⁽¹²⁻¹⁶⁾. In the recent time, possible therapeutic properties of the metal complexes have been examined. It was found that the complexes of transition metals with benzimidazole derivatives have a higher antimicrobial activity than the corresponding ligands ⁽¹⁷⁻²¹⁾.

Synthesis, characterization and antimicrobial

activities of transition metal complexes of 1,3bis(benzimidazolyl/N-methylbenzimidazolyl)be nzene have been reported ⁽¹⁸⁻²³⁾.

The aim of the present article is to prepare and characterize Copper (II) and palladium (II) complexes with 2-(Arylmethyleneacetyl)benzim idazole derivatives and their characterization by Elemental analysis, conductance measurements, TGA, UV-Visible, IR, thermal analyse as and X-ray diffraction were used to investigate the titled complexes.

Experimental

All the chemicals were of analytical reagent grade; the ligands 2-(Arylmethyleneacetyl)benzi midazole (L_1 - L_4) were prepared by procedure of Zeinab ⁽²⁴⁾. All solutions were prepared with doubly distilled water. The solutions were diluted as necessary to prepare standard working solution.

Where $R = H (L_1)$, p-Cl (L₂), p-NO₂ (L₃), p-N(CH₃)₂ (L₄)

Fig. 1. Structure of the Ligand 2-(Arylmethyl eneacetyl)benzimidazole (L_1-L_4) .

Preparation of the solid complexes

A solution of Cu(II) or Pd(II) chloride (0.01 mole dissolved in 25 ml ethanol) was added to a hot ethanolic solution of the ligands (L_1-L_4) (0.02 mole in 25 ml ethanol) in stoichiometric ratio 1:2 (metal ion : ligand). The mixture was refluxed for about 4 hours, the solid complexes were filtered on a water pump and washed several times with ethanol and dried in vacuum over P₄O₁₀.

Physical measurement and analyses

Electronic spectra of solutions of the complexes in DMF were recorded on a Perkin – Elmer Lambada 3B Spectrophotometer. The IR spectra were recorded on a Shimadzu IR 470 (4000-400) spectrophotometer using KBr discs. TGA measurements were carried out with a shimadzu thermal analyses 50, at heating rate of 20°C/min.

Conductivity was measured in solutions of the complexes in DMF (10^{-3} M) using Hana conductivity bridge (Model) HI 8819 at 25 °C.

Microanalyses for C, H, N were carried out at the Microanalytical center, Assiut University.

X-ray was carried out with Philips X-ray PW 1710 diffractometer using Ni-filtered CuK α radiation, Assiut University.

RESULT AND DISCUSSION:

The complex formation reaction of the ligands (L_1 - L_4) with Cu(II) and Pd(II) halides can be represented by the following equations:

 $MX_2 + 2 L \rightarrow [ML_2X_2]$ Where M= Cu (II) and Pd (II), X= Cl

They are soluble in DMF, DMSO, Acetone and slightly soluble in Ethanol, methanol.

The complexes were characterized by chemical analyses, IR and visible spectra, thermal analyses and conductivity measurements.

Molar conductance values for the solid complexes (1×10^{-3} M DMF solution) indicates that the complexes are non-electrolytes ⁽²⁵⁾.

Infrared spectra

The infrared spectra of the free ligand are recorded in the 4000 - 400 cm⁻¹ re-

gion and compared with the spectra of the Cu(II) and Pd(II) complexes. The characteristic of the ligand and complexes bands are listed in Table (1).

The IR spectrum of the free ligand display a stretching band at 3250-3450 cm⁻¹ attributed to vNH ⁽²⁴⁾. Also the free ligands spectrum exhibits a strong band at 1650-1662 cm⁻¹ is due to C=O stretching frequency The band corresponding to υ (C=N) vibration group is shifted to lower or higher values in the spectra of the complexes indicating that the nitrogen atom shared in coordination with metal ion in these complexes . Also other absorption band in the IR spectra of the free ligands at 1580-1595 cm⁻¹ attributed to the C=N group and The υ (C=O) absorption is also shifted to a lower or higher frequency indicating that the ligand is coordinated with the metal ion through the oxygen of the carbonyl group ⁽²⁶⁾.

The IR spectrum also exhibits stretching band of the free ligand at 1485-1540 cm⁻¹ attributed to the C=C of skeletal benzonoid moieties of these ligand, but these bann the complexes are slightly shifted compared to the free ligands.

So the conclusive evidence of the coordination of the 2-(Arylmethyleneacetyl)benzimidazo le (L_1-L_4) with the metal ions was shown by the appearance new bands at 482-505 cm⁻¹ and 525-585 cm⁻¹ assigned to the metal nitrogen (M—N) ⁽²⁷⁻²⁹⁾ and metal-oxygen (M—O)⁽³⁰⁾ vibrations, respectively. These bands were absent in the spectrum of the ligand itself, thus confirming participation of the O and N atoms in the coordination.

The x-ray powder diffraction patterns for the complexes of Cu(II) and Pd(II) with 2-

(Arylacetyl)benzimidazole are depicted in Figs. 2-4. They indicate that the Pd(II) complexes with L_2 and L_3 are crystalline (Fig. 2), also the Cu(II) complex with L_1 , L_2 and L_3 are semicrystalline(Fig. 3), while the Cu(II) complex with L_4 is amorphous (Fig. 4). This indicates that the polymeric structure of Cu(II) complexes with L_1 , L_2 , L_3 and L_4 are more convenient, while the Pd(II) complexes with L_2 and L_3 have a monomeric structure.

Syntheses and Characterization of Copper (II) and Palladium (II) Complexes with 217Table 1. Characteristic infrared bands and λmax electronic absorption bands of the
cetyl)benzimidazole (L₁-L₄) and its Cu (II) and Pd (II) complexes.2-(Arylmethylenea

Compound	vNH	vC=O	vC=N	vC=C	vM-O	vM-N	$\lambda_{max} nm$
L	3250	1650	1580	1510	-	-	330
$[\mathrm{Cu}(\mathrm{L}_{1})_{2}\mathrm{Cl}_{2}]$	3450	1655	1695	1517	585	490	430
$[Pd (L_1)_2 Cl_2]H_2O$	3150	1670	1600	1400	575	495	460
L ₂	3420	1662	1595	1485	-	-	332
$[\mathrm{Cu}(\mathrm{L}_2)_2\mathrm{Cl}_2]$	3340	1650	1585	1485	575	495	413
$[Pd (L_2)_2 Cl_2]H_2O$	3100	1678	1590	1483	580	482	455
L ₃	3300	1658	1585	1508	-	-	340
$[Cu (L_3)_2 Cl_2]H_2O$	3450	1655	1590	1510	525	505	423
$[Pd (L_3)_2 Cl_2]H_2O$	3150	1682	1587	1510	540	485	64
L ₄	3450	1658	1595	1540	-	-	436
$[Cu (L_4)_2 Cl_2]H_2O$	3350	1640	1585	1525	540	485	435
$[Pd (L_4)_2 Cl_2]H_2O$	3150	1620	1590 1560	1520	558	497	480

X-ray powder diffraction

Fig. 2. X-ray powder diffraction pattern of [Pd (L₃)₂Cl₂]H₂O complex.

Fig. 3. X-ray powder diffraction pattern of [Cu (L₃)₂Cl₂]H₂O complex.

Fig. 3. X-ray powder diffraction pattern of [Cu (L₄)2Cl₂]H₂O complex.

Microanalysis:

The elemental analysis (C.H.N) of the isolated complexes of Cu(II) and Pd(II) with 2-(Arylacetyl)benzimidazole $(L_1 - L_4)$ were found to be in agreement with calculated values which support the proposed formula of the complexes, Table (2),

These were ascertained by the continuous

Complex	Formula	Found (Calc.)%			
Complex	Formula	C%	Н%	N%	
[Cu (L.).Cl.]	C., H., N.O.Cl.Cu	60.50	3.46	8.66	
		(60.9)	(3.83)	(8.88)	
		55.20	4.10	8.40	
$[\operatorname{ru}(\operatorname{L}_1)_2 \operatorname{Cl}_2] \operatorname{H}_2 \operatorname{O}$	$C_{32}\Pi_{26}\Pi_{4}O_{3}CI_{2}\Gamma d$	(55.55)	(3.78)	(8.09)	
		54.50	2.53	7.73	
$[\operatorname{Cu}(\operatorname{L}_2)_2\operatorname{Cl}_2]$	$C_{32}H_{22}N_4O_2C_{14}Cu$	(54.91)	(3.16)	(8.01)	
$[Pd (L_2)_2 C_{12}] H_2 O$		50.80	3.52	6.95	
	$C_{32}H_{24}$ $N_4O_3CI_4Pd$	(50.51)	(3.17)	(7.36)	
$[Cu (L_3)_2 C_{12}]H_2O C_{32}H_{24}N_6O_7C_{12}Cu$		51.82	2.96	11.58	
	$C_{32}H_{24}H_{6}O_{7}C_{12}Cu$	(52.00)	(3.27)	(11.37)	
		49.58	3.31	11.08	
$[Pd(L_3)_2C_{12}]H_2O$	$C_{32}H_{24}H_{6}O_{7}C_{12}H_{6}U_{7}$	(49.15)	3.09))	(10.74)	
[Cu (L ₄) ₂ C ₁₂]H ₂ O		59.10	4.70	10.95	
	$C_{36}H_{36}N_6O_3CI_2CU$	(58.81)	(4.93)	(11.43)	
	C U NO CIDA	55.30	4.25	10.90	
$[Pa (L_4)_2 C_{12}]H_2 O$	$C_{36}H_{36}H_{6}O_{3}CI_{2}Pd$	(55.57)	(4.66)	(10.80)	

 Table 2. Elemental analysis result of the Cu(II) and Pd(II) complexes with 2-(Arylme- thyleneacetyl)benzi midazole derivatives.

variation and molar ratio methods. The results reveal that the stoichiometry is 1 : 2 (metal: ligand) ratio for each complex.

Thermal Analyses

Thermal analyses of the [Pd (L₂)₂Cl₂] H₂O complex (Fig. 5), was studied using the TG technique. The thermo gravimetric studies of the complex were carried out in the temperature range 30-800 °C with a sample heating rate 20°C/min in Nitrogen. The complex become anhydrous at 100 °C and the loss of weight was equal to 2.3% corresponding to the loss one molecule of water. DTA curve show an endothermic band due to the elimination of water, thus indicating that the water molecule are present in the outer sphere of the complex. The TG curve of $[Pd (L_2), Cl_2] H_2O$ complex also indicate a loss of weight at 150- 400 °C equal 23.6 % due to the loss of two PhCH. The final step of the decomposition occurs within the temperature range 400-750 0C corresponding to the decomposition of the complexe with the formation of the metal oxide (PdO) as a final product.

The thermal decompositions of [Cu $(L_3)_2Cl_2$]H₂O complex (Fig. 6) displays three steps, the first step in the range 50-300 °C corresponding to the loss of one water molecule

and two HCl molecules (12.5%). The second decomposition step at 300-450°C can be attributed to the removal of two molecules of NO₂ (12.4%)⁽³¹⁾. The third decomposition step at 450 – 750°C (89%) attributed to complete decomposition of parent molecule leaving copper oxide (CuO) as stable end product.

The TGA characteristic of the [Cu (L_1)₂Cl₂] complex have two decomposition steps (Fig. 7). The first step at 200-350 °C (11.6 %) corresponds to elimination of two HCl molecules ⁽³²⁾. The second weight-loss step between 350-750°C may be attributed to the loss of organic moiety of the complex molecule (87.5 %). The final de-

Fig. 5. TG diagram of [Pd (L₂)₂Cl₂]H₂O complex.

Syntheses and Characterization of Copper (II) and Palladium (II) Complexes with 2 19

Fig. 6. TG diagram of [Cu (L₃),Cl₂]H,O complex.

composition continuous up to 800 °C and on further increasing the temperature no weight loss is observed which may be attributed to formation of stable metal oxide (CuO).

Electronic spectra

The absorption spectra of the 2-(Arylmeth yleneacetyl)benzimidazole (L_1-L_4) in ethanol exhibit a main absorption at 330 nm , 332 nm, 340 nm and 436 nm for L_1-L_4 respectively. The maximum absorption of bands of the Cu(II) and Pd(II) complexes with 2-(Arylacetyl)benzimida zole (L_1-L_4) are recorded in Table (1).

Comparison of electronic absorption spectra of free ligands (L_1-L_4) with that of the chelated Cu(II) and Pd(II), reveals that the addition of metal ion to 2-(Arylacetyl)benzimidazole (L_1-L_4) ligand solutions results in band shift to

longer wavelength, which is an evidence for the formation of the coordination compounds.

Determination of the Stoichiometry and Formation Constants of the Complexes:

Complexes were studied in solution using ethanol as a solvents in order to determine the [M : L] ratio in the complexes. The stoichiometry of the 2-(Arylmethyleneacetyl)benzimidazo le (L₁-L₄) with (Cu(II) and Pd(II)) complexes

Fig.8. Molar ratio and continuous variation curve for Pd (II) L₃ complex.

were verified to be 1:2 (metal : ligand) by applying the two spectrophotometric methods

i- Molar ratio method ⁽³³⁾ ii- Jobs continuous variation method ⁽³⁴⁾

as shown in Figure 8.

The formation constant (K_f) of the complexes are determined by using data from the

continuous variation method (Job's plot) and molar ratio method.

The formation constant (K_f) is determined by using the following relation ^(35, 36):

The results in Table (3) reveal the following features:

Where M = Cu (II), Pd (II) and R = L_1 (H), L_2 (p-Cl), L_3 (p-NO₂), L_4 (p-N(CH₃)₂)

Fig. 9, Proposed structure of the complexes.

In general, the stability of the complexes of the same ligand goes in order Cu (II) > Pd (II). This order agrees with the conclusions reached by Grinberg and Yatsimirki ⁽³⁷⁾ and by Irving and Williams ⁽³⁸⁾.

Also The complexes stability of the same metals with the different ligands (L_1-L_4) increase in the following order:

 $L_4 (R=p-N(CH_3)_2) > L_1 (R=H) > L_3 (R=p-NO_2) > L_2(R=p-Cl)$

This is in agreement with decreasing electron releasing character of the substituent in the same direction which results in a decrease in the basicity of the azomethine nitrogen of the ligand

Complex	Molar Ratio	Continuous Variation	Mean
Cu- L ₁	5.25 ×10 ¹⁰	9.045 ×10 ¹⁰	7.14 ×10 ¹⁰
Cu-L ₂	4.45×10^{10}	7.25×10^{10}	5.85 ×10 ¹⁰
Cu- L ₃	4.92 ×10 ¹⁰	8.75×10 ¹⁰	6.83 ×10 ¹⁰
Cu- L ₄	5.7 ×10 ¹⁰	9.46 ×10 ¹⁰	7.58 ×10 ¹⁰
$Pd - L_1$	4.23×10 ¹⁰	7.09 ×10 ¹⁰	5.66 ×10 ¹⁰
Pd-L ₂	4.09 ×10 ¹⁰	6.36 ×10 ¹⁰	5.22 ×10 ¹⁰
Pd-L ₃	4.19 ×10 ¹⁰	6.61 ×10 ¹⁰	5.44 ×10 ¹⁰
Pd-L ₄	4.29 ×10 ¹⁰	7.11 ×10 ¹⁰	5.70 ×10 ¹⁰

Table. 3. Apparent formation constant values (K_t) of the different Cu(II) and Pd(II) complexes with 2-(Arylmethyleneacetyl)benzimidazole derivatives.

and consequently the tendency toward complex formation is expected to decrease.

Based on the evidence discussed above and various physico-chemical studies, the following structures (Fig. 9) can be proposed about the nature of these complexes.

REFERENCES

- 1- Ansari, K. F., Lal, C., J. Chem. Sci. 2009, 121 (6), 1017.
- 2- Alper, S., Temiz-Arpaci, O., Aki-Sener, E., Yalcin, I., Il Farmaco, 2003, 00, 1.
- 3- Gata, L., Perna, F., Figura, N., Ricci, C., Holton, J., D'Anna, L., Miglioli, M., Vaira, D., J. Antimicrob. Chemother. 2003, 51, 439.
- 4- Kucukbay, H., Durmaz, R., Orhan, E., Gunal, S., Il Farmaco, 2003, 58, 431.
- 5- Kazimierczuk, Z., Upcroft, J. A., Upcroft, P., Gorska, A., Starosciak, B., Laudy, A., Acta Biochim. Polon. 2002, 49 (I), 185.

- 6- Garuti, L., Roberti, M., Cermelli, C., Bioorg. Medicinal Chem. Letter. 1999, 9, 2525.
- Akbay, A., Oren, I., Temiz-Arpaci, O., Aki-Sener, E., Yalcin, I., Arzneim.- Forcsh./Drug Res. 2003, 53, 266.
- Casse, C., Giannoni, f., Nguyen, V. T., Dubois, M. F., Bensaude, O., J. Biol. Chem. 1999, 274, 16097.
- 9- Preston, P. N., Chem. Rev. 1974, 74, 279.
- Drolet, D. P., Manufa, D. M., Less, A., J. Inorg. Chim. Acta, 1988,146, 173.
- Verweij, P. D., Dugue, T., Diessen, W. L., Reedijk, J., Rowatt, B., Sherrington, D. C., Reactive Polym. 1991, 14, 213.
- 12- Gosh, S. P., J. Indian Chem. Soc. 1951, 28, 710.
- 13- Gosh, S. P. and Gosh, H. M., J. Indian Chem. Soc. 1956, 33, 894.
- 14- Goodgame, G. and Cotton, F. A., J. Am. Chem. Soc. 1962, 84, 1543.
- 15- Goodgame, D. M. L., Goodgame, M., Inorg. Chem. 1965, 4, 139.

Syntheses and Characterization of Copper (II) and Palladium (II) Complexes with 2 21

pore 1990.

- 16- Reedijik, J. J., Inorg. Nucl. Chem. 1973, 35, 239.
- 17- Gumus, F., Algul, O., Eren, G., Eroglu, H., Diril, N., Gur, S., Ozkul, A., E. J. Med. Chem. 2003, 303.
- Podunavac-Kuzmanović, S. O., Leovac, V. M., Perišić-Janjić, N. U., Rogan, J., Balaž, J., J. Serb. Chem. Soc. 1999, 64, 381.
- Podunavac-Kuzmanović, S. O., Ćetković, G. S, Leovac, Markov, S. L., N. U., Rogan, J. J., Acta Periodica Technologica, 2001, 32, 145.
- Podunavac-Kuzmanović, S. O., Leovac, V. M., Ćetković, G. S., Markov, S. L., Acta Periodica Technologica, 2002, 33, 151.
- 21 Podunavac-Kuzmanović, S. O., Lj. S. Vojinović., Acta Periodica Technologica, 2003, 34, 119.
- 22 Gayathri, V., Shashikala, N., Nanje Gowda, N. M., Reddy, G.K.N., Ind. J. Chem. 1993, 32A, 38.
- 23- Podunavac-Kuzmanović, S. O.; Cvetković D. M.; Vojinović, L. S.; APTEFF 2004, 35, 1-280.
- 24- Hozien, Z. A., J. Chem. Tech. Biotechnol. 1993, 57, 335.
- 25- Geary, W. J., Coord. Chem. Rev., 1971, 7, 81.
- 26- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination compounds. 4th edn, J. Wiley and Sons, New York, Chichester, Bribane, Toronto, Singa-

- 27- Hill, D. G., Rosenberg, A. F., J. Chem. Phys. 1954, 22, 148.
- 28- Hill D. G., Rosenberg, A. F., J. Chem. Phys. 1956, 24, 1219.
- 29- Kobayashi, M., Fujita, J., J. Chem. Phys. 1955, 23, 1354.
- 30- Ibrahim, M. M., Ramadan, A. M., mersal, G. A. M., Elshazly, S., J. Mol. Struct. 2011, 998, 1.
- Ptaszyński, B. and Zwolińska, A. Polish J of Environmental Studies. 2001, 10 (4), 257.
- 32-M. Abdelbaset, M. Abd-Elmottaleb, Al-Azhar Bull. SCi. 2010, 21 (1) 119.
- 33- Yoe, J. H., Jones, A. L., Ind . Eng. Chem. Analyst. Edn. 1944, 16, 111.
- 34- Job, P., Ann .Chem. 1928, 9, 113.
- Inczedy, J., "Analytical Application of Complex Equilibria", 2nd ed.; Jhon Wiley & Sons.Inc.: Budapest, 1976.
- 36- Erk, N., Anal. Lett. 2003, 36, 1183
- 37- Grinberg, A. A., Yatsimirsk, K. B., Bull. Acad. Sci. USSR. Div. Chem. Sci. 1952, 239.
- 38- Irving, H., Williams, R. J. P., J. Chem. Soc. 1953, 3192.

M. Abdelbaset

الملخص العربى

تحضير وتوصيف ودراسات بيولوجيه على متراكبات أيونات النحاس الثنائى والبلاديوم الثنائى مع مشتقات -2 أريل متحضير وتوصيف ودراسات بيولوجيه على متيلين اسيتيل بنزاميدازول.

محمد عبدالباسط معروف

قسم الكيمياء - كلية العلوم - جامعة الأزهر (فرع أسيوط)

يتضمن البحث تحضير متر اكبات النحاس الثنائى والبلاديوم الثنائى مع اربع مشتقات -2اريل مثيلين اسيتيل بنز اميداز ول بنسبة مولية 1:2 ليجند :فلز فتكونت ثمانية متر اكبات بنفس النسبة المولية السابقة وتم توصيف ودراسة هذه المتر اكبات بواسطة التحليل العنصرى والتحليل الحرارى الوزنى ودراسة أطياف الأشعه تحت الحمراء وأشعة أكس والأشعه المرئيه لتحديد صيغ التر اكيب الجزيئيه وطريقة التر ابط بين الفلزات وهذه المشتقات. أيضا تم دراسة متر اكبات النحاس الثنائى والبلاديوم الثنائى مع اربع مشتقات -2اريل مثيلين اسيتيل بنز اميدازول فى المحاليل بالطرق الطيفيه مثل طريق التغير المستمر والنسبه المولاريه لدراسة نسبه تكون المتر اكب وتبين من الدراسه ان نسبة تكون المتراكبات 2:1 وتم حساب ثوابت التكوين لهذه المتراكبات. ووضع تصور عن الارتباط بين مشتقات -2اريل مثيلين اسيتيل واليول وتم حساب ثوابت التكوين لهذه المتر اكبات. ووضع تصور عن الارتباط بين مشتقات -2اريل مثيلين اسيتيل بنز اميدازول و يتم حساب ثوابت التكوين لهذه المتر اكبات.