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AN INVESTIGATION OF 6HE+12C ELASTIC SCATTERING USING MICROSCOPIC 
CLUSTER MODEL
Awad A. Ibraheem∗

Physics Department, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt

ABSTRACT
In the frame work of the cluster folding model, for the first time, the 6He+12C real folded potentials are derived using new

forms of the nuclear matter density of 6He nucleus based on α+2n  or di-triton configurations. The angular distributions of
the elastic scattering differential cross section at energies 38.3,41.6 and 82.3 MeV/nucleon are reexamined using the gener-
ated potentials.  Comparisons between the extracted and measured angular distributions of the differential cross sections are 
presented. Satisfactory reproduction of the data is extracted by using the square Woods-Saxon (WS2) form instead of the usual 
WS shape without need to renormalize the derived potentials. The resulted reaction cross sections are also investigated and 
compared with the optical limit Glauber model predictions.

Keywords: Optical model; Elastic scattering; Halo nuclei; folding model, Glauber model.

I. INTRODUCTION

The study of light systems with very weakly-
bound and neutron-rich exotic nuclei has been of 
particular interest. In order to obtain sufficient
information about their weakly-bound nature, 
internal structure, the large radial extent in their 
densities and the dynamics of its interactions, 
most of studies have performed both experimen-
tally and theoretically [1-18]. 

Elastic scattering of 6He from a nucleus is 
considered as the door way reaction which has 
been studied to find characteristics that would be
typical for weakly bound light nuclei and would 
help understanding their structure [5]. The struc-
ture of 6He nucleus is a prototypical example of 
the Borromean structure (a tightly bound 4He 
core and two valence neutrons). The two valence 
neutrons extend well beyond the 4He core with a 
separation energy S2n= 0.975 MeV. The elastic 
scattering data at 38.3 and 41.6 MeV/nucleon 
from 12C were analyzed within the framework 
of the optical model. Initial analyses [16] were 
done using double-folded real potential using 
DDM3Y interactions [3] and a Woods-Saxon 
(WS) imaginary potential. From those analyses, 
it was concluded that a satisfactory description 
of the whole angular range of the data could not 
be obtained by adjusting the imaginary potential 
parameters and a simple renormalization of the 
real potential. A systematic analysis in conjunc-
tion with 6Li data at similar energies was able to 
provide a good description of the data when a 
repulsive empirical dynamic polarized potential 

DPP of a surface form was added to the real part 
of the potential and an absorptive surface form 
DPP to the imaginary part [16]. Another analy-
sis  for 6He and 6Li elastic scattering at about 35 
MeV/nucleon revealed that the data could be de-
scribed by optical model potentials which has a 
deeper imaginary potential well for 6Li[3].

The main objective of the present study is (i) 
to explore another structure of the 6He nucleus 
within Triton-Triton (t+t) approximation beside 
three-particle approximation (α+2n). This was 
recently investigated by means of a 2n transfer 
reaction and the result shows that the spectro-
scopic factor obtained for the α+2n configu-
ration is as good as expected, but the spectro-
scopic factor obtained for the t+t configuration
is much smaller than the theoretical predictions 
[19,20].(ii) to check the ability of the imaginary 
part W(R) of square Woods Saxon( WS2) form 
instead of the usual Woods Saxon (WS) shape to 
describe the experimental data of  6H+ 12C elastic 
scattering  with minimal number of fitting pa-
rameters as possible.

However, the need for a renormalization of 
the 6He+12C potential has been shown by sev-
eral authors [21,22]. A previous folding analysis 
performed for of 6He + 12C system has clearly 
indicated the need for an appreciate the dynamic 
polarized potential DPP to be added to the folded 
potential as shown, for example, in equation (3) 
of Ref.[16].       

At the intermediate energies considered, the 
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polarization potential is meant to arise mainly 
from the strong coupling to the breakup channels 
of 6He. This has been in fact shown very clearly 
in the four-body CDCC analysis done by the Ky-
ushu group[23], who found that the polarization 
potential due to breakup channels is repulsive, 
and this should lead to a normalization constant 
less than 1 in the double folding DF analysis. 

 For this purpose, we re-examine the elastic 
scattering of 6He from 12C target at three differ-
ent energies 38.3, 41.6 and recently 82.3 MeV/
nucleon using several density distributions of 
6He nucleus.  Firstly, we perform the calcula-
tions with a phenomenological volume WS real 
and imaginary potential. Second, we execute the 
same calculations using the microscopic double 
folding (DF) cluster model using +2n and 
Triton-Triton models (denoted as D1 and D2, 
respectively) as well as the few body Faddeev 
calculation (denoted as Q3) for the density of 
6He nucleus [6,18] to calculate the central real 
part of the DF optical potential. We show in this 
paper the 6He+12C data can be well reproduced 
and interoperated within the frame work of DF 
real potential , without renormalization factor,   
supplemented with an imaginary part W(R) of 
square Woods Saxon( WS2) form). Finally, all 
the results are compared with each other as well 
as with the experimental data obtained from EX-
FOR database [24].

In the next section the theoretical formalism 
is described while results on the analysis and 
discussion are presented in sec. III. Section IV 
summarizes the conclusions extracted from the 
present study. 

II. FORMALISM

II-1 Optical potential

The optical model potential involved in this 
work has the standard form,

 

      (1)

 and are the attractive real and 
imaginary parts of the nuclear potential, respec-
tively.

is the Coulomb potential due to a uni-
form distribution of appropriate size, radius                        

  (2)

and  are the mass numbers of the pro-
jectile (P) and the target (T) nuclei while,  and 

denote their corresponding charges, respec-
tively.

 In the phenomenological analysis the attrac-
tive real and imaginary potentials are treated 
phenomenologically using conventional forms 
like WS potentials or any other forms. Alterna-
tive analyses replace the phenomenological real 
part of equation (1) by a microscopic one based 
on the DF approach. The DF potential may be 
written as the double-convolution integral

                       (3)

Where  and  are the ground state density 
distribution of projectile (6He) and target (12C) 
nuclei. The effective nucleon–nucleon (NN) in-
teraction, , is integrated over both density 
distributions. Several NN interaction expressions 
can be used for the folding model potentials. We 
have chosen the most common one, the M3Y 
(Michigan 3 Yukawa) realistic interaction [25].  
In the present work, we use the former form with 
the relevant exchange correction term due to the 
Pauli principle, given by

       (4)

II.2 THE NUCLEAR DENSITY OF 6He

There are some uncertainties concerning the 
density of 6He. We have several choices to study 
the effect caused by the halo structure of 6He[6-
16]. For this reason, three different forms of the 
ground state density distribution are used in the 
folding calculation. The first one, the 6He nucle-
us is assumed to consist of a core of 4He and two 
halo neutrons ( +2n). Then, one may formulate 
the nuclear matter density of 6He as[14]  
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Where γc = 0.6756 fm-2 and γh= 0.1305 fm-2. The resulted density, denoted as D1, yields the 

extracted root mean square (rms) radii 1.49, 3.39 and 2.54 fm for the free 4He, two-neutron and 
6He densities, respectively. These radii are close to the value evaluated from the four-body 

analysis of 6He+12C total reaction cross sections [6], and by the analysis of elastic scattering of 

6He on protons at high energies [7].  
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The resulted density, denoted as D1, yields the 
extracted root mean square (rms) radii 1.49, 3.39 
and 2.54 fm for the free 4He, two-neutron and 
6He densities, respectively. These radii are close 
to the value evaluated from the four-body analy-
sis of 6He+12C total reaction cross sections [6], 
and by the analysis of elastic scattering of 6He on 
protons at high energies [7]. 

  In parallel to the +2n cluster model, we 
also introduce, for the first time, another form of
the nuclear matter density of 6He based on two 
Triton-Triton (3H1-

3H1  ) cluster model as,

  

      

(9)

Where R is the 3H1-
3H1  separation inside 6He 

nucleus,           is the wave function of the relative 
motion of 3H1-

3H1 clusters in the ground state 
of 6He nucleus. This relative wave function is 
taken also in the form of equation (6) with   .  A 
Gaussian form for the density distribution of the 
triton (3H1) has been assumed as [26] 

       (10)

with . The calculations have been performed 
with the code MATHEMATICA [27]. The re-
sulted density is denoted by D2. Finally, for the 

sake of comparison, we considered another form 
for 6He density which is taken from Ref. [6,7]  
obtained by Faddeev wave function and denoted 
by Q3.

Throughout the present work, this density can 
be expressed as a summation of thirteen Gauss-
ian terms as

                         

                                                                 (11)

The parameters and  are listed in Table 
(1). The corresponding matter rms is 2.54 fm. 
It should be noted that, the first term represents
also, the matter density distribution of alpha par-
ticle with rms radius equals to 1.47 fm.

The obtained densities are shown in Fig.1. It 
is noticed that the D1 density seems substantial-
ly deeper than D2 and Q3 at the center (r = 0.0), 
however, D1 and D2 densities have consistent 
values through the radial range r = 3.0- 5.0 fm, 
One may notice also that all densities have the 
same value (~0.056    fm-3) at r ≅1.78 fm ,

The ground state matter density of 12C is tak-
en as a two parameter Fermi function as [28]

  (12)

This density yields a rms radius equal 2.298 
fm close to those obtained from (e,e) scattering 
measurements. This density has a similar shape 
to the one obtained by shell model calculations 
[28].

III. RESULTS AND DISCUSSION

In this work, we checked  the ability of the 
derived cluster folding potential based on α+2n  
or, for the first time, di-triton configurations to
analyze the elastic scattering of 6He + 12C at 
38.3, 41.6 and 82.3 MeV/nucleon. The analysis 
is performed in the framework of optical model. 
First a phenomenological analysis is preformed 
using the standard WS optical potential. Second,  
the analysis is done using a real part of the op-
tical potential obtained microscopically by the 
DF model of equation (4).  In this model, we use 
three different forms of the nuclear matter den-
sity distribution of 6He (D1, D2 and Q3) folded 
with a realistic M3Y effective NN interaction. 
The resulted potentials with each density are de-
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analysis of 6He+12C total reaction cross sections [6], and by the analysis of elastic scattering of 

6He on protons at high energies [7].  
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Where R is the 3H1-
3H1  separation inside 6He nucleus, )(R  is the wave function of the relative 

motion of 3H1-
3H1 clusters in the ground state of 6He nucleus. This relative wave function is 

taken also in the form of equation (6) with   𝛼 = 0.11495𝑓𝑚��.  A Gaussian form for the 

density distribution of the triton (3H1) has been assumed as [26]  
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with 𝛾� = 0.567 𝑓𝑚��. The calculations have been performed with the code MATHEMATICA 

[27]. The resulted density is denoted by D2. Finally, for the sake of comparison, we considered 

another form for 6He density which is taken from Ref. [6,7]  obtained by Faddeev wave function 

and denoted by Q3. 
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        The parameters C� and  a� are listed in Table (1). The corresponding matter rms is 2.54 fm. 

It should be noted that, the first term represents also, the matter density distribution of alpha 

particle with rms radius equals to 1.47 fm. 

The obtained densities are shown in Fig.1. It is noticed that the D1 density seems 

substantially deeper than D2 and Q3 at the center (r = 0.0), however, D1 and D2 densities have 

consistent values through the radial range r = 3.0- 5.0 fm, One may notice also that all densities 

have the same value (~0.056    fm-3) at r 1.78 fm , 

The ground state matter density of 12C is taken as a two parameter Fermi function as [28] 
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noted as DFC1, DFC2 and DFC3, respectively. 

This analysis are carried out using the HIOP-
TIM-94 program[29] fed with either phenom-
enological potential of equation (1) or  by the 
calculated microscopic real potentials (DFC1 , 
DFC2 and DFC3) supplemented by an imagi-
nary part W(R) of square Woods Saxon( WS2) 

form instead of the usual Woods Saxon (WS) 
shape as

 
 

                    (13)

Where W0, rI and  aI are the depth, radius and 
diffuseness parameters, respectively. Best fits
are obtained by minimizing χ2, where

         (14)

σth (σexp) is the theoretical (experimental) cross 
section at angle θk in the center-of-mass system, 
Δσexp is the experimental error and N is the num-
ber of data points. 

All the obtained potentials have similar be-
havior with each other. The reaction cross-sec-
tions for the microscopic potential calculation are 
consistent with those obtained in Refs.[1,2,and 
16 ]. The best fit parameters extracted from the
auto search code are listed in the Table( 2,3).

In a previous folding analysis performed for 
of 6He + 12C system has clearly noted the data 
required a strong renormalization factor Nr of 
the real part to be correctly described the data 
with standard imaginary WS potential. In our 
calculations, the situation is different, where we 
replaced the standard WS with square WS2 form 
of equation (13).  In this case, a very satisfactory 
a agreement is reached with normalization factor 
Nr equal unity.

FIG. 1.The nuclear matter density distribution of 6He  (D1 and D2) deduced from 
Eqs.(5 and 9) in comparison with those of Faddeev model (Q3) in Eq.(11).

Table 1: The obtained parameters  and   of  
Eq.(11).

k (fm-3) (fm-2)

1 0.4154230 0.694153

2 -2.208400 0.603806

3 0.0018019 0.063792

4 0.5811340 0.522915

5 0.5696400 0.522679

6 -2.380550 0.424470

7 0.5809250 0.522914

8 0.9387690 0.355672

9 0.5797400 0.522909

10 0.5678100 0.523446

11 0.5757130 0.522877

12 -0.608940 5.640160

13 0.6015380 5.509230
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This density yields a rms radius equal 2.298 fm close to those obtained from (e,e) scattering 

measurements. This density has a similar shape to the one obtained by shell model calculations 

[28]. 

 

FIG. 1.The nuclear matter density distribution of 6He  (D1 and D2) deduced from Eqs.(5 and 9) in 
comparison with those of Faddeev model (Q3) in Eq.(11). 
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σth (σexp) is the theoretical (experimental) cross section at angle θk in the center-of-mass system, 

Δσexp is the experimental error and N is the number of data points.  

All the obtained potentials have similar behavior with each other. The reaction cross-

sections for the microscopic potential calculation are consistent with those obtained in 

Refs.[1,2,and 16 ]. The best fit parameters extracted from the auto search code are listed in the 

Table( 2,3). 

In a previous folding analysis performed for of 6He + 12C system has clearly noted the 

data required a strong renormalization factor Nr of the real part to be correctly described the data 

with standard imaginary WS potential. In our calculations, the situation is different, where we 

replaced the standard WS with square WS2 form of equation (13).  In this case, a very 

satisfactory a agreement is reached with normalization factor Nr equal unity. 

On the other hand, authors of Refs.[1,2]  used two sets (A and B) of the imaginary parts 

of optical potential to fit the experimental data at 82.3 MeV/nucleon including contributions 

from the inelastic channels with real DF potential based on CDM3Y6 effective NN 

interaction[3]. These sets give total reaction cross-sections 𝜎� of 853 and 843 mb. In our 

analysis, new search for the phenomenological potential corresponding parameters 

𝑉�, 𝑟�, 𝑎� , 𝑊�, 𝑟�𝑎𝑛𝑑  𝑎� (Fig. 2) are determined by analyzing the angular distributions of the 

elastic scattered 6He on 12C target (full curves). The obtained total reaction cross-section value is 

less than that obtained in Refs. [1,2] and inconsistent with the results of DFC1, DFC2 and DFC3. 



An investigation of 6He+12C Elastic Scattering Using Microscopic Cluster Model 5
On the other hand, authors of Refs.[1,2]  used 

two sets (A and B) of the imaginary parts of opti-
cal potential to fit the experimental data at 82.3
MeV/nucleon including contributions from the 
inelastic channels with real DF potential based 
on CDM3Y6 effective NN interaction[3]. These 
sets give total reaction cross-sections  of 853 
and 843 mb. In our analysis, new search for the 
phenomenological potential corresponding pa-
rameters (Fig. 2) are 
determined by analyzing the angular distribu-
tions of the elastic scattered 6He on 12C target 
(full curves). The obtained total reaction cross-
section value is less than that obtained in Refs. 
[1,2] and inconsistent with the results of DFC1, 
DFC2 and DFC3. The maximum and minimum 
observed in the experimental data around 40 
MeV/nucleon are in phase problem with our 
theoretical results.

The total reaction cross-sections correspond-
ing to the above microscopic calculations are 
also presented in the Table-3, which are consis-
tent with those obtained at other energies [16].
The total reaction (absorption) cross section, 
σR, is considered as an important quantity in the 
analysis of the elastic scattering reaction. Hence, 
it would be interesting to investigate whether 
one could generate a reasonable determination 
of σR using the derived potentials. Therefore, we 
demonstrated in Fig. 3, the imaginary volume in-
tegral as well as the obtained energy dependence 
of σR obtained with the present analysis using the 
derived potential results and compared within 
the optical limit Glauber model approximation 
OLA. Within the optical limit Glauber model, 
the total reaction cross section, σR is expressed 
as [30-32].

 (15)    
                                                     

where T (b) is the transparency function of 
the collision at impact parameter b. 

 

(16)

The phase χ(b) is simply related to the nucle-
on-nucleon profile function γNN by: 

(17)

Calculations are carried out by evaluating 
Eqs.(15-17) numerically. Important information 
that one can obtain from the elastic scattering is 
the volume integral Ju

 
. For an interaction poten-

tial U(R) between two nuclei that have nucleon 
numbers AP and AT ,  the volume integral per 
interacting nucleon pair Ju  is defined as

   (18)

This quantity is currently used as a sensitive 
measure of the potential strength. In the present 
work, we apply this definition to the real and to
the imaginary parts of U(R), independently de-
noted as JR and JI , respectively. It is also obvious 
that the obtained reaction cross section and the 
imaginary volume integral have almost identical 
energy dependence as shown in the Table-3. This 
result is physically expected where both Ji and σR 
concern the absorption to nonelastic channels.

IV. CONCLUSION

This work presents an optical model analy-
sis of several 6He+12C reactions at three different 
energies using both phenomenological as well as 
microscopic (double-folding) optical model po-
tentials. For the latter, several prescriptions for 
the 6He matter density (D1,D2 and Q3) are used 
and compared to study the effects of these den-
sities on the elastic scattering observables. The 
double folding DF real potentials based upon 
the M3Y interaction successfully reproduced 
the scattering data all over the measured angu-
lar ranges without renormalization factors. The 
imaginary part is parameterized during the anal-
ysis in a squared WS2 form instead of the usual 
WS shape. This is an interesting result, where it 
was pointed out [2] the calculation included con-
tributions from inelastic excitations of the car-
bon target is reasonably reproduced by micro-
scopic JLM potential with a reduction of imagi-
nary part. On the other hand, the normalized DF 
real potential with standard WS imaginary part 
fail to reproduce the experimental data for the 
whole angle range, while WS2 potential are in 
agreement with the considered data. It should be 
noted also, in the forward angle between (3◦ - 9◦) 
the data at 82.3 MeV/nucleon  are not described 
in a quantitative way. Finally the comparison 
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Fig 2. Elastic scattering data for 6He 
on 12C at 38.3, 41.6 and 82.3  
MeV/nucleon in comparison 
with the results given by the 
real folded potentials (DFC1, 
DFC2 and DFC3 respectively) 
obtained with the M3Y inter-
action.

Fig 3. Energy dependence 
of the imaginary vol-
ume integrals and re-
action cross sections 
obtained by the real 
double folding po-
tentials include the 
total reaction cross 
sections results of op-
tical limit phase shift 
calculations with D1, 
D2 and Q3 namely 
OLA(D1), OLA(D2) 
and OLA(Q3) re-
spectively.
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Fig 2. Elastic scattering data for 6He on 12C at 38.3, 41.6 and 82.3  MeV/nucleon in 

comparison with the results given by the real folded potentials (DFC1, DFC2 and 
DFC3 respectively) obtained with the M3Y interaction. 
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Fig 3. Energy dependence of the imaginary volume integrals and reaction 

cross sections obtained by the real double folding potentials include 
the total reaction cross sections results of optical limit phase shift 
calculations with D1, D2 and Q3 namely OLA(D1), OLA(D2) and 
OLA(Q3) respectively. 
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between the elastic angular distributions calcu-
lated with the OMPs and those obtained from the 
present cluster folding model proves the latter as 
most reliable
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