## Al-Azhar Bulletin of Science

Volume 23 | Issue 1

Article 8

6-1-2012 Section: Chemistry

# SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ON SOME TRANSITION METAL COMPLEXES OF TETRAHYDRO-2-THIOXO-1H—CYCLOPENTA[b] PYRIDINE-3-CARBONITRILE.

ALI HASSAN Chemistry Department, Faculty of Science, AI -Azhar University, Cairo, Egypt

MOSTAFA OMARA Chemistry Department, Faculty of Science, Al -Azhar University, Cairo, Egypt

ABD ELAZIZ ELSID Chemistry Department, Faculty of Science, AI -Azhar University, Cairo, Egypt

GALAL EL GEMEIE Chemistry Department, Faculty of Science, Al -Azhar University, Cairo, Egypt

TAREK ALY FOREWISKING DEPOSITION TO A Stranger AL-AZHAR UNIVERSITY, CAISO Egyptimal

Part of the Life Sciences Commons

## How to Cite This Article

HASSAN, ALI; OMARA, MOSTAFA; ELSID, ABD ELAZIZ; EL GEMEIE, GALAL; and ALY, TAREK (2012) "SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ON SOME TRANSITION METAL COMPLEXES OF TETRAHYDRO-2-THIOXO-1H—CYCLOPENTA[b] PYRIDINE-3-CARBONITRILE.," *Al-Azhar Bulletin of Science*: Vol. 23: Iss. 1, Article 8. DOI: https://doi.org/10.21608/absb.2011.7192

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh\_Mekheimer@azhar.edu.eg.

## SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ON SOME TRANSITION METAL COMPLEXES OF TETRAHYDRO-2-THIOXO-1H—CYCLOPENTA[b] PYRIDINE-3-CARBONITRILE.

# ALI.M.A. HASSAN, MOSTAFA M.M. OMARA, ABD ELAZIZ ELSID, GALAL E. EL GEMEIE and TAREK H. ALY.

Department of Chemistry, Faculty of Science, Al-Azhar University, Egypt

## Abstract

A series of Cr(III), Co(II), Cu(II) and Zn(II) complexes of two types (ML,ML) Where L is 2, 5, 6, 7 – tetrahydro – 2 –thioxo – 1H- cyclopenta[b] pyridine- 3-carbonitrile are synthesized and confirmed by their elemental microanalysis, IR, electronic absorption spectra, magnetic moment and HNMR spectra. The various decomposition steps are determined from thermal analysis and determined the numbers of water molecules in the complexes. Kinetic parameters of the thermal decomposition have been evaluated and the data was refined using the least square method. Values of the activation energy, correlation coefficient and order of decomposition reaction were computed and discussed. Also Entropy ( $\Delta$ S), enthalpy ( $\Delta$ H) and free energy ( $\Delta$ G) of activation were computed. And biological effects were studied.

## Introduction

Although many aspects of donor behavior of sulfur-containing ligands have been investigated [1-4], yet for heterocyclic systems attention has been mainly concentrated on nitrogen-containing ligand molecules [5,6]. Heterocyclic thiones are a group of ligands containing thioketonic (thiones) group directly attached to the carbon atoms of the heterocyclic molecules and thus, thione ligands possess donor behavior of both sulfur- containing systems as well as heterocyclic molecules. A common feature of all nitrogen-containing heterocyclic thiones is the thiol  $\leftrightarrow$  thione tautomerism (schems 1) where it has been established [7,8] that the thione dominates in the solid state.



Schems 1

## Experimental

#### I- Materials

Metal salts: The metal salts CrCl<sub>3</sub>.6H<sub>2</sub>O, CoSO<sub>4</sub>.7H<sub>2</sub>O, CuSO<sub>4</sub>.5H<sub>2</sub>O and ZnSO<sub>4</sub>.7H<sub>2</sub>O used for the preparation of complexes were of general grade reagents ( prolabo chemicals ).

## **II-Preparation Of The Ligand [9]:**

Ligand (HL<sup>1</sup>): 2,5,6,7-tetrahydro-2-thioxo-1H-cyclopenta[b]pyridine-3carbonitri-le. The derived from heterocyclic compounds, which we are used, were prepared according to the literature procedure [9].

The ligand used in the present study has the following structures:



**Primary ligands** 

#### **III-Preparation Of The Binary Complexes:**

The binary complexes were synthesized by adding a clear methanolic solution (25 ml) of the metal salt (1 mmole) dropwise to methanolic solution (25 ml) of the ligand (1 and 2 mmole) in 1:1 and 1:2 molar ratios (M : L) with constant stirring in one direction with heating for two hours. The precipitate was obtained then left at room temperature for 12-24 hour. The mixture (methanol) was permitted to evaporate slowly at room temperature until one-third its original volume, whereby a microcrystalline solid was separated. Then the solid obtained was filtered, washed with methanol and dried in vacuo over  $P_4O_{10}$ . The binary complexes were analyzed for their carbon, hydrogen, nitrogen, sulfur, and metal contents.

## **IV-COMPLEX SOLUTIONS:**

Stock solution of complexes were prepared by dissolving the accurate weight of each in the appropriate volume solvents (DMF) solutions of required concentration were prepared by accurate. Dilution with the prper solvent.

## V - IR spectra:

IR spectra of the ligand and its metal complexes were recorded on Shimadzu 140 Infrared Spectrophotometer (4000 - 400 cm ) as KBr discs. The proton HNMR spectra DMSO –d6 on a Varian FT -200 Mhz spectrometer using TMS as internal standard at Assiut university. The electronic absorption spectra were recorded with Shimadzu 2101 recording spectrophotometer. All conductance measurements reported in this study were performed using an LF Digi 550 conductance bridge with an immersion cell . The thermogravimetic analysis were detrmined using Shimadzu analyzer 50 H For TGA and DTA in a dynamic nitrogen atmosphere (100 ml/min). The antimicrobile activity of the ligand and their complexes was tested using the usual cup – plate diffusion technique. The culture media used are nutrient agar media supplemented with 1 g yeast/L.

## **Results And Discussion**

I.1 The results of elemental analyses are show in Table 1. The complexes are soluble in DMF and DMSO, but not soluble in most common organic solvents. The measured molar conductance values of dimethylformamide (DMF) solutions of Cr(III), Co(II), Cu(II) and Zn(II) complexes fall in the range 25.37-57.23 Ohm<sup>-1</sup> Cm<sup>2</sup> mol<sup>-1</sup> (Tables 1). These values indicate that those complexes are non electrolytes, since the reasonable range for 1:1 electrolytes in DMF is 65-90 Ohm<sup>-1</sup> cm<sup>2</sup> mol<sup>-1</sup> [10]. On the other hand molar conductance values of Cr(III) complex (1:1) (metal : ligand) is 77.92 Ohm<sup>-1</sup> Cm<sup>2</sup> mol<sup>-1</sup> indicate that this complex is 1:1 electrolyte [10].

#### 1.2. IR SPECTRA

Infrared spectra of crystalline solid compounds have been investigated. The IR spectra of the free ligands 2,5,6,7-tetrahydro-2-thioxo 1*H*-cyclopenta[b]pyrindi-ne-3-carbonitrile (HL<sup>1</sup>) exhibit thione-thiol (HN-C=S  $\leftrightarrow$  N=C-SH) tautomerism [11] as given in scheme **2**.









11 0

The IR spectra of the free ligands 2,5,6,7-tetrahydro-2-thioxo 1*H*-cyclopenta[b]pyrindi-ne-3-carbonitrile (HL<sup>1</sup>) show the absorption band in the range 3600 - 3300 cm<sup>-1</sup>, can be assigned to stretching vibration of (NH) group [12]. The appearance an absorption band at 2950 cm<sup>-1</sup> in HL<sup>1</sup> attributed to **v** aliphatic structure of cyclic. Also The presence of an absorption band at 2185 cm<sup>-1</sup> attributed to stretching vibration of  $v C \equiv N$ . The presence of an absorption band at 1240 cm<sup>-1</sup> attributed to stretching vibration of  $v C \equiv S$ .

The IR spectra of investigated solid complexes shows disappearance the bands in the range 3500 - 3300 cm<sup>-1</sup> due to stretching vibration of (NH) group in ligand . The disappearance of these band is due to the displacement of the hydrogen ion from the NH group [11,13,14] through the coordination moiety. This result confirmed by <sup>1</sup>H NMR data.

The band at 2185 cm<sup>-1</sup> in  $HL^1$  is att1ributed to stretching C=N are shifted to lower frequencies due to coordination in all investigated complexes, in the range 2220-2200 cm<sup>-1</sup> for  $HL^1$  complexes.

The band at 1280 cm<sup>-1</sup> in HL<sup>1</sup> which corresponding to stretching vibration of C=S are shifted tor lower frequencies due to coordination with metal ions [15] in the range 1150-1260 cm<sup>-1</sup> for all complexes.

The appearance of a broad band in range  $3450 - 3650 \text{ cm}^{-1}$  is due to  $\nu\text{OH}$  of coordinated water complexes [14-16].

Also the two new bands appear for all chelates at 500-540 cm<sup>-1</sup> region corresponding to stretching [M-S] [16-17] metal-sulphur bond or M –O bond [17] and at 430-470 cm<sup>-1</sup> due to stretching [M  $\leftarrow$  N] [16] metal-nitrogen bond. The important IR bands are listed in (Tables 2) and (Figs 1,2)

## 1.3. <sup>1</sup>H NMR

The <sup>1</sup>H NMR spectrum of the ligand [9] HL<sup>1</sup> show characteristic signal at 2.2 ppm due to appearing the (–NH) proton and Moreover the appearance of the band located at 2.8 ppm may be assigned to the (–SH) proton. The band observed at 7.95 ppm may be assigned to (–CH–pyridine–) proton. The important <sup>1</sup>H NMR spectrum bands are listed in (Table 3) for ligand HL<sup>1</sup> and its complexes.

|                                                                  |        |         | _      |           |         |         | m.p.    | Conductance                      |
|------------------------------------------------------------------|--------|---------|--------|-----------|---------|---------|---------|----------------------------------|
| Compounds                                                        | Colour |         | Fou    | ind (Calc | d.%)    |         | °C      | Ohm <sup>-1</sup>                |
|                                                                  |        | C       | Н      | N         | 5       | M       | Decomp. | cm <sup>2</sup> mol <sup>2</sup> |
| HL <sup>1</sup>                                                  | D 11.1 | 59.79   | 4.44   | 15.64     | 18.02   |         |         |                                  |
| $C_9H_8N_2S$                                                     | brown  |         |        |           |         | -       | 190     | -                                |
| M.Wt =176.24                                                     | DIOWII | (61.34) | (4.57) | (15.89)   | (18.19) |         |         |                                  |
| [CrCl(L <sup>1</sup> )                                           |        | 22.76   | 5 36   | 6.12      | 74      | 12.02   |         |                                  |
| $(H_2O)_3$ ]·Cl·5H <sub>2</sub> O                                | Dark   | 22.70   | 5.50   | 0.12      | 7.4     | 12.52   | >330    | 77.92                            |
| $C_9H_{23}CrCl_2N_2O_8S$                                         | brown  | (24 36) | (5.18) | (6 31)    | (7.2)   | (11 73) |         |                                  |
| M.Wt= 443.26                                                     |        | (24.30) | (3.10) | (0.51)    | (7.2)   | (11.75) |         |                                  |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{.}7H_{2}$                            |        | 35.09   | 5.17   | 9.49      | 11.05   | 8.50    |         |                                  |
| 0                                                                | Dark   |         |        |           |         |         | >330    | 57.23                            |
| $C_{18}H_{30}CrCIN_4O_8S_2$                                      | brown  | (37.00) | (5.13) | (9.58)    | (10.95) | (8.93)  |         |                                  |
| M.Wt= 584                                                        |        | (0/100) | (0.10) | (0.00)    | (10.00) | (0.00)  |         |                                  |
| $[Co(SO_4) (L^1)(H_2O)_2]$                                       | Dark   | 3297    | 3.42   | 8.70      | 15.00   | 18.22   |         |                                  |
| $C_9H_{11}CoN_2O_4S_{1.5}$                                       | brown  |         |        |           |         |         | >330    | 30.24                            |
| M.Wt= 318.23                                                     | DIOWII | (33.96) | (3.48) | (8.80)    | (15.12) | (18.52) |         |                                  |
| $[Co(L^1)_2(H_2O)_2]$                                            | Dark   | 48.44   | 4.07   | 12.11     | 13.78   | 13.11   |         |                                  |
| $C_{18}H_{18}CoN_4O_2S_2$                                        | brown  |         |        |           |         |         | >330    | 28.45                            |
| M.Wt= 445.43                                                     | DIOWII | (48.54) | (4.07) | (12.58)   | (14.40) | (13.23) |         |                                  |
| $[Cu(SO_4) (L^1)]$                                               | Dark   | 36.96   | 2.31   | 9.85      | 15.85   | 7.30    |         |                                  |
| $C_9H_7CuN_2O_2S_{1.5}$                                          | Croop  |         |        |           |         |         | >330    | 25.37                            |
| M.Wt=286.81                                                      | Green  | (37.69) | (2.46) | (9.77)    | (16.77) | (22.16) |         |                                  |
| [Cu(L <sup>1</sup> <sub>2</sub> ] <sup>.</sup> 7H <sub>2</sub> O |        | 39.72   | 5.22   | 10.60     | 11.48   | 11.03   |         |                                  |
| C18H28CuN4O7S2                                                   | Dark   |         |        |           |         |         | >330    | 32.33                            |
| M.Wt=540.12                                                      | Green  | (40.03) | (5.23) | (10.37)   | (11.87) | (11.77) |         |                                  |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{\cdot}2H_{2}O$                     | Dala   | 44.22   | 4.54   | 11.46     | (12.98) | (13.00) |         |                                  |
| $C_{18}H_{22}ZnN_4O_4S_2$                                        | vellow |         |        |           |         |         | >330    | 37.79                            |
| M.Wt=487.92                                                      | yenow  | (44.31) | (4.55) | (11.48)   | (13.15) | (13.40) |         |                                  |

 Table 1: Colour, elemental analyses, melting point and conductance value of the complexes.

| Compounds                                              | υ(H <sub>2</sub> O) | Y NH | υ SH | υ alphatic<br>St. of<br>cyclic | Y<br>C≡N | δ ΝΗ | δ (H <sub>2</sub> O) | Y<br>C=S | M-S | M←<br>N |
|--------------------------------------------------------|---------------------|------|------|--------------------------------|----------|------|----------------------|----------|-----|---------|
| $HL^1$                                                 | -                   | 3300 | 3200 | 2950                           | 2185     | 1510 | -                    | 1240     | -   | -       |
| [CrCl(L <sup>1</sup> )                                 | 3500                | -    | -    | 2950                           | 2220     | -    | 1360                 | 1260     | 510 | 460     |
| $[CrCl(L^1)_2(H_2O)]^{\cdot}7H_2O$                     | 3600                | -    | -    | 2950                           | 2210     | -    | 1360                 | 1260     | 510 | 460     |
| [Co (L <sup>1</sup> )(H <sub>2</sub> O) <sub>2</sub> ] | 3550                | -    | -    | 2950                           | 2205     | -    | 1360                 | 1250     | 510 | 470     |
| [Co(L1)2(H2O)2]                                        | 3600                | -    | -    | 2950                           | 2200     | -    | 1360                 | 1250     | 520 | 470     |
| [Cu (L1)]                                              | -                   | -    | -    | 2950                           | 2215     | -    | -                    | 1250     | 500 | 450     |
| [Cu(L1)2].7H2O                                         | 3600                | -    | -    | 2950                           | 2200     | -    | 1365                 | 1250     | 510 | 450     |
| [Zn(SO4) (L1)].3H2O                                    | 3600                | -    | -    | 2950                           | 2205     | -    | 1380                 | -        | 510 | 460     |
| [Zn(L1)2(H2O)2].2H2                                    | 3550                | -    | -    | 2950                           | 2190     | -    | 1380                 | -        | 500 | 470     |

| Complexes                               | m, 2H,          | M, 4H,    | S, 1H, pyridine | S, br, 1H, | S, br, 1H, | S, nH, |
|-----------------------------------------|-----------------|-----------|-----------------|------------|------------|--------|
| Complexes                               | CH <sub>2</sub> | $2CH_2$   | 4H              | NH         | SH         | $H_2O$ |
| $HL^1$                                  | 1.91            | 2.61-2.95 | 7.95            | 2.2        | 2.8        | -      |
| $[Co(L^{1})(H_{2}O)_{2}]$               | 0.6             | 2.6-2.8   | 8.4             | -          | -          | 3.6    |
| $[Co(L^1)_2(H_2O)_2]$                   | 0.9             | 2.5-2.85  | 8.4             | -          | -          | 4.4    |
| $[Zn ((L^1))]^3H_2O$                    | 1.8             | 2.7-3.05  | 8.4             | -          | -          | 4.2    |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$ | 1.8             | 2.4-2.7   | 8.5             | -          | -          | 5.6    |

Table 3: <sup>1</sup>H NMR spectrum data of ligand (HL<sup>1</sup>) and its metal complexes (ppm).

#### 1.4. Electronic Spectra And Magnetic Susceptibility Measurements.

The obtained spectral characteristic data (mainly  $\upsilon_{max}$  in cm<sup>-1</sup> and  $\varepsilon_{max}$  in cm<sup>2</sup> mol<sup>-1</sup>) of the different band displayed by the free ligand and their binary complexes are given in (Tables 4, 5) and (Fig. 3-8)

#### Cr(III) COMPLEXES

The electronic spectra of the Cr(III) complexes exhibits tow sets of bands. The first set of bands with  $v_{max}$  at 30.581 cm<sup>-1</sup> and 29.940 cm<sup>-1</sup> could be attributed to intra-ligand charge transfer transitions in N\_----C\_---S moiety [18]. The second set having  $v_{max}$  at 21.598 Cm<sup>-1</sup> and 21.141 cm<sup>-1</sup> attributed to the d-d electronic transition which may be assigned  ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{2g}(F)$  transition. Octahedral geometry is proposed [19-21].

At room temperature magnetic moment value of the complexes  $[CrCl(L^1) (H_2O)_3]$ ·Cl<sup>-</sup>5H<sub>2</sub>O and  $[CrCl(L^1)_2(H_2O)]$ ·7H<sub>2</sub>O are 3.82 and 3.97 B.M. respectively, indicating the presence of three unpaired electrons [21-24].

#### Co(II) COMPLEXES

The electronic spectrum of Co(III) complexes exhibits tow sets of bands. The first set of bands with  $v_{max}$  at 30.674 and 30.120 cm<sup>-1</sup>, could be attributed to intraligand charge transfer transitions. The second set include a shoulder bands having  $v_{max}$  at 21.413 and 21.739 Cm<sup>-1</sup> for [Co((L<sup>1</sup>)(H<sub>2</sub>O)<sub>2</sub>] and [Co(L<sup>1</sup>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] respectively attributed to the d-d electronic transition which may be attributed to (<sup>4</sup>T<sub>1g</sub>  $\rightarrow$  <sup>4</sup>T<sub>1g</sub>) (P), suggesting octahedral geometries [25-26].

At room temperature magnetic moment value of the complexes  $[Co(SO_4)_{0.5}(L^1)(H_2O)_2]$  is 3.74 indicating the presence of three unpaired electrons. And  $[Co(L^1)_2(H_2O)_2]$  is 6.95 B.M., characteristic of high-spin octahedral [21,27,28] Co(II) complexes.

## Cu(II) COMPLEXES

The electronic spectra of complex  $[Cu(SO_4)_{0.5}(L^1)]$  display two sets of bands. The first set of band at  $v_{max}$  30.120 cm<sup>-1</sup> could be attributed to intra-ligand charge transfer transitions. The second set having  $v_{max}$  at band 21.881 cm<sup>-1</sup> attributed to the

d-d electronic transition which attributed to  ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$  transition, suggesting square planer geometries [29,30].

At room temperature magnetic moment value of the complex  $[Cu(SO_4) (L^1)]$  is diamagnetic.

## **Zn(II) COMPLEXES**

The electronic spectrum of Zn(II) complex exhibits two sets of bands. The first set of bands with  $v_{max}$  at 33.670 cm<sup>-1</sup> and 34.602cm<sup>-1</sup> could be attributed to intraligand charge transfer transitions. The second set includes a shoulder bands having  $v_{max}$  at 24.509 cm<sup>-1</sup> and 26.178 cm<sup>-1</sup> attributed to the L  $\rightarrow$  MCT transition.

Zn(II) complex are found to be diamagnetic as expected for  $d^{10}$  configuration. On the basis of elemental analysis, infrared spectra, magnetic measured, thermal analysis and known coordination preferences, tetrahedral geometry [31,32] is suggested for [Zn(SO<sub>4</sub>) (L<sup>1</sup>)]<sup>3</sup>H<sub>2</sub>O, while octahedral structure [33,34] is suggested for [Zn(L<sup>1</sup>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2</sup>H<sub>2</sub>O.

| Complexes                                        | $\lambda_{max}$ | $\upsilon_{max}$    | Emax                             | Assignment              |
|--------------------------------------------------|-----------------|---------------------|----------------------------------|-------------------------|
|                                                  | (nm)            | (cm <sup>-1</sup> ) | $(\text{cm}^2 \text{ mol}^{-1})$ |                         |
| $\mathrm{HL}^1$                                  | 400             | 25.000              | 1100                             | $n \rightarrow \pi^*$   |
|                                                  | 313             | 31.948              | 8400                             | $\pi \rightarrow \pi^*$ |
| $[CrCl(L^1)(H_2O)_3]Cl^5H_2O$                    | 463             | 21.598              | 150                              | d→d                     |
|                                                  | 327             | 30.581              | 890                              | Intraligand             |
|                                                  |                 |                     |                                  | transition              |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-7}H_{2}O$           | 473             | 21.141              | 300                              | d → d                   |
|                                                  | 334             | 29.940              | 2100                             | Intraligand             |
|                                                  |                 |                     |                                  | transition              |
| $[Co(SO_4)(L^1)(H_2O)_2]$                        | 467             | 21.413              | 1700                             | d→d                     |
|                                                  | 326             | 30.674              | 10900                            | Intraligand             |
|                                                  |                 |                     |                                  | transition              |
| $[Co(L^1)_2(H_2O)_2]$                            | 460             | 21.739              | 150                              | d → d                   |
|                                                  | 332             | 30.120              | 430                              | Intraligand             |
|                                                  |                 |                     |                                  | transition              |
| $[Cu(SO_4) (L^1)]$                               | 457             | 21.881              | 500                              | d → d                   |
|                                                  | 332             | 30.120              | 7400                             | Intraligand             |
|                                                  |                 |                     |                                  | transition              |
| $[Zn(SO_4) (L^1)]$ <sup>3</sup> H <sub>2</sub> O | 382             | 26.178              | 4800                             | СТ                      |
|                                                  | 297             | 33.670              | 10200                            | Intraligand             |
|                                                  |                 |                     |                                  | transition              |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$          | 408             | 24.509              | 7500                             | СТ                      |
|                                                  | 289             | 34.602              | 23500                            | Intraligand             |
|                                                  |                 |                     |                                  | transition              |

Table 4 : Electronic spectral data of the complexes.



Fig. 1. Infrared spectra of the free ligand HL<sup>1</sup> and its metal complexes.

 $\begin{array}{ll} (a) = Free \ ligand \\ (b) = [CrCl(L^1)(H_2O)_3] \cdot Cl \cdot 5H_2O \\ (c) = [CrCl(L^1)_2(H_2O)] \cdot 7H_2O \\ (d) = [Co(L^1)(H_2O)_2] \\ \end{array}$ 



 $\begin{array}{ll} \mbox{Fig. 2. Infrared spectra of the free ligand HL^1 and its metal complexes.} \\ (f) = [Cu(\ (L^1)] & (g) = [Cu(L^1)_2]^7H_2O \\ (h) = [Zn(L^1)]^3H_2O & (i) = [Zn(L^1)_2(H_2O)_2]^2H_2O \end{array}$ 



| Complexes                                         | $X_g$   | $\mu_{eff}$ |
|---------------------------------------------------|---------|-------------|
| $[CrCl(L^{1})(H_{2}O)_{3}]$ ·Cl·5H <sub>2</sub> O | 0.01368 | 3.82        |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{.}7H_{2}O$            | 0.01128 | 3.97        |
| $[Co(SO_4)_{0.5}(L^1)(H_2O)_2]$                   | 0.01828 | 3.74        |
| $[Co(L^1)_2(H_2O)_2]$                             | 0.04507 | 6.95        |
| $[Cu(SO_4)_{0.5}(L^1)]$                           | 0       | D           |
| $[Zn(SO_4)_{0.5}(L^1)]$ '3H <sub>2</sub> O        | 0       | D           |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$           | 0       | D           |

Table 5 : The molar magnetic susceptibility ( $\chi_g$ ) and magnetic moment ( $\mu_{eff}$ ) of the complexes.

## 1.5. Tentative Structures

Based on the above results gained from elemental analysis, IR, <sup>1</sup>HNMR and electronic spectra, the following tentative structures show the coordination sites of the ligands in the complexes (1-8) [11].





#### 1.6. THERMAL STUDIES [35,36]

The complex of  $[CrCl_2(L^1)(H_2O)_2]^6H_2O$ , show the decomposition in three steps in the temperature range 40-267, 226-360 and 362-607°C. The first step corresponds to the evolution of 8 crystalline and coordinate water molecules, the second step corresponds to decomposition  $C_8H_7N$  with amount 26.47%. The third step amounted to 16.18%, attributed to the removal of 2Cl, while the final product is CrS and CN with amount 25%.

For the complex  $[CrCl(L^1)_2(H_2O)].7H_2O$ , the pyrolysis curves exhibit almost, the same TGA pattern, namely three decomposition steps in the range 40-120°C, 200-107°C and 350-700. The first step corresponds to the evolution of 8 crystalline and coordinate water molecules, the second step corresponds to decomposition  $2C_8H_7N$  with amount 40.29%. The third step amounted to 14.93%, attributed to the removal of Cl and 2CN, while the final product is  $CrS_2$  with amount 20.15%.

While the complex  $[Co(SO_4) (L^1)(H_2O)_2]$  decompose in two step, the first step in the range 200-333°C which corresponds to the evolution of 2 coordinate water molecules. The second step corresponds decomposition C<sub>5</sub>HN & (SO4), CN and S with amount 56.82%, while the final product is Co with amount 18.38%.

For the complex  $[Co (L^1)_2(H_2O)_2]$  show the decomposition in two steps in the temperature range 226-333 and 400-616°C. The first step corresponds to the evolution of two coordinate water molecules, the second step corresponds to decomposition C<sub>8</sub>H<sub>7</sub>NS, CN and S with amount 45.76%, while the final product is CoS with amount 20.34%.

While the complex [Cu(SO<sub>4</sub>) (L<sup>1</sup>)] decompose in three steps, the first step in the range 200-320°C which corresponds to the decomposition  $C_3H_6$ . The second step in the range 358-483°C corresponds decomposition  $C_5HN$  and CN with amount 35.07%, and the third step in the range 665-780°C corresponds decomposition (SO<sub>4</sub>) with amount 16.42%, while the final product is CuS with amount 33.58%.

#### SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ... 119

For the complex  $[Cu (L^1)_2]$  7H<sub>2</sub>O show the decomposes in three steps in the temperature range 40-110, 200-341 and 645-729°C. The first step corresponds to the evolution of 7 crystalline water molecules, the second step corresponds to decomposition 2C<sub>8</sub>H<sub>7</sub>N with amount 43.19%, and the third step corresponds to decomposition 2CN with amount 9.85%, while the final product is CuS<sub>2</sub> with amount 23.48%.

While the complex  $[Zn(So_4) (L^1)]$ ·3H<sub>2</sub>O decompose in three steps, the first step in the range 40-131°C which corresponds to the evolution of 3 crystalline water molecules. The second step in the range 223-360°C corresponds decomposition  $C_8H_7N$  with amount 34.33%, and the third step in the range 400-650°C corresponds decomposition CN, (SO<sub>4</sub>) and S with amount 30.60%, while the final product is Zn with amount 19.40%.

For the complex  $[Zn(L^1)_2(H_2O)_2]^2H_2O$  show decomposes in two steps in the temperature range 232-322 and 330-697°C. The first step corresponds to the evolution of 4 crystalline and coordinate water molecule, the second step corresponds to decomposition  $2C_8H_7N$ , 2CN and 2S with amount 71.64%, while the final product is Zn with amounts 13.61%.

The TGA and DTA data are presented in (Table 6) and (Figs. 9-11).

## Kinetic data of the complexes

The coats-redfern and Horowitz-Metzger equations were used for evaluating the kinetic parameters [37,38]. (Table 7) reports the computed values of activation energy for the various decomposition steps which are given in (Table 6).

Entropy ( $\Delta$ S), enthalpy ( $\Delta$ H) and free energy ( $\Delta$ G) of activation [39-46] were computed using equations (1), (2), (3).

| $\Delta S = 2.303 (\log zh/kT_s) R$  | (1) |
|--------------------------------------|-----|
| $\Delta H = E-RT_s$                  | (2) |
| $\Delta G = \Delta H - T_s \Delta S$ | (3) |

Where k and h are Boltzman and Plank constants, respectively. The data are compiled in (Table 8)

| Compounds                                           | M. wt.  | Step            | Decomp.            | Lost           | of wt. | change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------|---------|-----------------|--------------------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |         |                 | Temp. °C           | %              | %      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                     |         |                 |                    | calc.          | found  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                     |         | 1 <sup>st</sup> | 50-330             | 23.88          | 23.75  | Loss of C <sub>3</sub> H <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathrm{HL}^{1}$                                   | 176.24  | 2 <sup>nd</sup> | 400-700            | 76.12          | 76.25  | Loss of C <sub>6</sub> H <sub>2</sub> N <sub>2</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                     |         |                 |                    | -              | -      | No residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |         | 1 <sup>st</sup> | 40-167             | 32.59          | 32.35  | Loss of 8H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $[CrCl(L^1)(H_2O)_3]Cl^5H_2O$                       | 442.26  | 2 <sup>nd</sup> | 226-360            | 26.49          | 26.47  | Loss of C <sub>8</sub> H <sub>7</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     |         | 3 <sup>rd</sup> | 362-607            | 16.03          | 16.18  | Loss of 2Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                     |         |                 |                    | 24,89          | 25.00  | Residue Cr&S&CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                     |         | 1 <sup>st</sup> | 40-120             | 24.63          | 24.63  | Loss of 8H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-7}H_{2}O$              | 582.04  | 2 <sup>nd</sup> | 200-307            | 40.29          | 40.29  | Loss of 2(C <sub>8</sub> H <sub>7</sub> N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |         | 3 <sup>rd</sup> | 350-700            | 14.93          | 14.93  | Loss of Cl&2CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     |         |                 |                    | 20.15          | 20.15  | Residue CrS <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                     |         | 1 <sup>st</sup> | 200-333            | 24.55          | 25.00  | Loss of 2H <sub>2</sub> O&C <sub>3</sub> H <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     |         | 2 <sup>nd</sup> | 335-533            | 56.93          | 56.82  | Loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $[Co(SO_4) (L^1)(H_2O)_2]$                          | 318.23  |                 |                    |                |        | C <sub>5</sub> HN&0.5(SO4) &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     |         |                 |                    | 18.52          | 18.38  | CN&S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     |         |                 |                    |                |        | Residue Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                     |         | 1 <sup>st</sup> | 226-333            | 34.39          | 33.90  | Loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     | 445 40  | 2 <sup>nd</sup> | 400-616            | 45.18          | 45.76  | $2H_2U\&C_8H_7N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $[C0 (L^{2})_{2}(H_{2}O)_{2}]$                      | 445.43  |                 |                    | 20.42          | 20.34  | LOSS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     |         |                 |                    |                |        | C <sub>8</sub> n <sub>7</sub> n <sub>3</sub> aCnas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     |         | 1 st            | 246 220            | 14.60          | 14.02  | Loss of C H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $[C_{12}(SO) (I^{1})]$                              | 206 01  | nd nd           | 240-320            | 14.09          | 14.95  | LOSS OF $C_3\Pi_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [Cu(SO4) (L )]                                      | 200.01  | 2<br>Drd        | 550-405<br>665 700 | 35.25<br>16.75 | 35.07  | Loss of C5HINQCIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                     |         | 5               | 003-700            | 10.75          | 22 50  | Loss of 0.5(504) &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                     |         | 1 st            | 40.110             | 22.22          | 22.20  | Less of 711 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $[C_{12}(1^{-1})] + 711 O$                          | E 40 12 | nd nd           | 40-110             | 23.35          | 23.40  | Loss of 2C U N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $[Cu(L)_2]/\Pi_2O$                                  | 540.12  | 2               | 200-341            | 45.50          | 45.19  | LOSS OF $2C_8H_7$ IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                     |         |                 | 045-729            | 9.05           | 9.05   | LOSS OF ZCIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     |         | 1 st            | 40 121             | 23.04          | 23,48  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                     | 242.07  |                 | 40-131             | 15.//          | 15.8/  | Loss of 3H <sub>2</sub> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $[2n(SO_4 (L^2))]^3 H_2O$                           | 342.07  | 2 <sup>nd</sup> | 223-360            | 34.18          | 34.33  | Loss of C <sub>8</sub> H <sub>7</sub> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     |         | 3               | 400-650            | 30.97          | 30.60  | LOSS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     |         |                 |                    | 19.08          | 19.40  | $C_{1} \otimes O_{2} \otimes O_{4} \otimes O_{4$ |
|                                                     |         | 1 <sup>st</sup> | ררכ רבר            | 14 77          | 1475   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $[7n(1^{1}) (\mathbf{H} \cap)]^{1} \mathbf{H} \cap$ | 407.00  | ) I<br>Jnd      | 232-322            | 14.//          | 14./0  | LUSS 01 4H <sub>2</sub> U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [LII(L )2(H2U)2]2H2U                                | 407.92  | <sup>∠</sup>    | 220-02/            | 12 40          | 12.64  | $2C_{\circ}H_{*}N\&2CN\&2S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                     |         |                 |                    | 15,40          | 13.01  | Residue Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

**Table 6:** TGA. data for binary complexes of the ligand (HL<sup>1</sup>).





Fig(10) TGA & DTA thermogram of {Co(SO<sub>4</sub>) (L1)2(H<sub>2</sub>O)}



| Complexes                                                             | Step            |      | Coats         | -Redfern |           | Horowitz-Metzger |       |           |  |
|-----------------------------------------------------------------------|-----------------|------|---------------|----------|-----------|------------------|-------|-----------|--|
|                                                                       |                 | n    | r             | Е        | intercept | r                | Е     | intercept |  |
| [CrCl (L <sup>1</sup> )(H <sub>2</sub> O) <sub>3</sub> ] <sup>.</sup> | $1^{st}$        | 2.00 | <u>0.9893</u> | 0.35     | 3.5616    | <u>0.9938</u>    | 0.75  | -4.6080   |  |
| Cl <sup>·</sup> 5H <sub>2</sub> O                                     | $2^{nd}$        | 2.00 | <u>1.0000</u> | 13.38    | 3.9000    | <u>0.9999</u>    | 14.70 | -23.9193  |  |
|                                                                       | $3^{rd}$        | 1.00 | <u>0.9992</u> | 8.37     | 2.0000    | <u>0.9996</u>    | 12.65 | -14.4863  |  |
|                                                                       |                 |      |               |          |           |                  |       |           |  |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{-7}H_{2}O$                                | $1^{st}$        | 2.00 | <u>1.0000</u> | 0.58     | 2.3075    | <u>0.9979</u>    | 0.87  | -7.3312   |  |
|                                                                       | $2^{nd}$        | 2.00 | <u>0.9981</u> | 19.76    | 10.000    | <u>0.9970</u>    | 20.97 | -35.4631  |  |
|                                                                       | 3 <sup>rd</sup> | 2.00 | <u>0.9796</u> | 21.21    | 5.5000    | <u>0.9799</u>    | 22.92 | -27.0653  |  |
| $[Co (L^1)_2(H_2O)_2]$                                                | $1^{st}$        | 2.00 | <u>0.9949</u> | 35.54    | 21.2000   | <u>0.9942</u>    | 36.76 | -59.6167  |  |
|                                                                       | $2^{nd}$        | 0.33 | <u>1.0000</u> | 15.99    | 1.3000    | <u>1.0000</u>    | 21.15 | -20.4503  |  |
|                                                                       |                 |      |               |          |           |                  |       |           |  |
| [Cu (L <sup>1</sup> ) <sub>2</sub> ] <sup>.</sup> 7H <sub>2</sub> O   | $1^{st}$        | 0.33 | <u>1.0000</u> | 0.21     | 3.2913    | <u>1.0000</u>    | 0.73  | -4.9692   |  |
|                                                                       | $2^{nd}$        | 0.50 | <u>0.9999</u> | 4.64     | 1.7000    | <u>1.0000</u>    | 5.89  | -9.3257   |  |
|                                                                       | $3^{rd}$        | 1.00 | <u>0.9999</u> | 39.24    | 6.2000    | <u>0.9998</u>    | 42.11 | -30.4590  |  |
|                                                                       |                 |      |               |          |           |                  |       |           |  |
| [Zn                                                                   | $1^{st}$        | 2.00 | <u>0.9460</u> | 5.42     | 0.1000    | <u>0.9817</u>    | 1.60  | -3.2475   |  |
| $(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$                                  | 2 <sup>nd</sup> | 2.00 | <u>0.9684</u> | 8.53     | 0.3000    | <u>0.9911</u>    | 2.67  | -3.9457   |  |
|                                                                       |                 |      |               |          |           |                  |       |           |  |

Table 7: Kinetic parameters of the thermal decomposition of the Complexes.

E (Kcal/mol)

Table 8: kinetic parameters of the thermal decomposition of the Complexes.

| Complexes                                   | Step            | (                       | Coats-Re | edfern     |          | Horowitz-Metzger |        |            |          |
|---------------------------------------------|-----------------|-------------------------|----------|------------|----------|------------------|--------|------------|----------|
|                                             |                 | Z                       | ΔS       | $\Delta H$ | ΔG       | Z                | ΔS     | $\Delta H$ | ΔG       |
| $[CrCl(L^1)(H_2O)_3]$ ·Cl·5H <sub>2</sub> O | $1^{st}$        | 86.941×10 <sup>3</sup>  | -0.113   | -2.746     | 39.749   | 0.858            | -0.209 | -2.348     | 75.892   |
|                                             | 2 <sup>nd</sup> | 71.558×10 <sup>5</sup>  | -0.081   | 8.450      | 56.555   | 0.856            | -0.213 | 9.769      | 136.457  |
|                                             | 3 <sup>rd</sup> | 56.341×10 <sup>3</sup>  | -0.123   | 2.274      | 92.550   | 0.898            | -0.215 | 6.558      | 164.153  |
| $[CrCl(L^{1})_{2}(H_{2}O)]^{.}7H_{2}O$      | $1^{st}$        | 7.891×10 <sup>3</sup>   | -0.133   | -2.274     | 43.409   | 0.787            | -0.209 | -1.982     | 699.720  |
|                                             | 2 <sup>nd</sup> | 13.303×10 <sup>12</sup> | 0.039    | 15.037     | -7.262   | 1.112            | -0.211 | 16.247     | 136.152  |
|                                             | 3 <sup>rd</sup> | 45.146×10 <sup>7</sup>  | -0.048   | 15.360     | 49.153   | 0.969            | -0.214 | 17.073     | -133.383 |
| $[Co(L^1)_2(H_2O)_2]$                       | $1^{st}$        | 33.917×10 <sup>23</sup> | 0.258    | 30.730     | -118.631 | 1.415            | -0.209 | 31.958     | 152.899  |
|                                             | 2 <sup>nd</sup> | 21.478×10 <sup>3</sup>  | -0.131   | 9.396      | 113.937  | 1.017            | -0.214 | 14.554     | 184.748  |
| $[Cu(L^1)_2]$ ·7H <sub>2</sub> O            | $1^{st}$        | 27.657×10 <sup>3</sup>  | -0.122   | -2.683     | 40.078   | 0.988            | -0.208 | -2.163     | 70.224   |
|                                             | 2 <sup>nd</sup> | 15.670×10 <sup>3</sup>  | -0.234   | -0.244     | 137.841  | 1.023            | -0.212 | 1.005      | 125.714  |
|                                             | 3 <sup>rd</sup> | 41.865×10 <sup>8</sup>  | -0.032   | 31.146     | 62.535   | 0.985            | -0.216 | 34.016     | 244.759  |
| $[Zn(L^1)_2(H_2O)_2]^2H_2O$                 | $1^{st}$        | 459.793                 | -0.160   | 0.868      | 88.943   | 0.955            | -0.212 | -2.954     | 113.266  |
|                                             | 2 <sup>nd</sup> | 11.46×10 <sup>2</sup>   | -0.154   | 3.146      | 103.275  | 0.949            | -0.213 | -2.714     | 135.646  |
| $7 (c^{-1})$                                |                 |                         |          |            |          |                  |        |            |          |

 $\begin{array}{l} Z \quad ( \ s^{\text{-1}} ), \\ \Delta S \ (Jk^{\text{-1}}mol^{\text{-1}}) \\ \Delta H \ (kJmol^{\text{-1}}) \\ \Delta G \ (kJmol^{\text{-1}}) \end{array}$ 

## **1.7. MICROBIOLOGICAL SCREENING**

Tests were directed towards bacteria. The tested bacteria species some of them are pathogenic, namely *Staphylococcus aureus* (Gram +ve) *Eicoli* and *Klebsilla*. These species were cultivated on nutrient agar (N.A) media. The synthesized compounds were dissolved in DMF. Sterilized filter paper discs were added to dissolve compounds until saturation. Then the saturated discs put on the surface of agar plates. The plates were incubated at 28 °C for 24 hours. The inhibition zones around the discs were measured in mm. (Table 9) indicates the antmicrobiological activity of each compound.

|                                                                                        | Bacteria       |        |           |  |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------|--------|-----------|--|--|--|--|--|
| Complexes                                                                              | Staphylococcus | Eicoli | Klebsilla |  |  |  |  |  |
|                                                                                        | A ureus        |        |           |  |  |  |  |  |
|                                                                                        | Gram +ve       |        |           |  |  |  |  |  |
| $[CrCl(L^1)(H_2O)_3] \cdot Cl \cdot 5H_2O$                                             | -              | -      | +         |  |  |  |  |  |
| [CrCl(L <sup>1</sup> ) <sub>2</sub> (H <sub>2</sub> O)] <sup>.</sup> 7H <sub>2</sub> O | +              | -      | -         |  |  |  |  |  |
| $[Co(SO_4)_{0.5}(L^1)(H_2O)_2]$                                                        | +              | -      | +         |  |  |  |  |  |
| $[Co(L^1)_2(H_2O)_2]$                                                                  | +              | -      | -         |  |  |  |  |  |
| $[Cu(SO_4)_{0.5}(L^1)]$                                                                | +              | -      | -         |  |  |  |  |  |
| $[Cu(L^1)_2]$ 7H <sub>2</sub> O                                                        | +              | +      | -         |  |  |  |  |  |
| $[Zn(SO_4)_{0.5}(L^1)]$ <sup>3</sup> H <sub>2</sub> O                                  | +              | -      | +         |  |  |  |  |  |
| $[Zn(L^{1})_{2}(H_{2}O)_{2}]^{2}H_{2}O$                                                | +              | +      | -         |  |  |  |  |  |

Table 9: Microbiological screening of the complexes.

- No activity
- + Activity

#### References

- 1. H. Vahrenkamp, Agnew. Chem., Int. Ed. Engl., 14, 322 (1975).
- 2. E.W. Ainscough and A.M.Brodie, Coord. Chem. Rev., 27, 59 (1978).
- 3. C.G.Kuehn and S.S.Isied, Prog.Chem., 27, 1953 (1980).
- 4. A. Mueller, W.Jaegerman and J.H.Enemark, Coord. Chem. Rev., 46, 245 (1982).
- 5. M.Inoue and M.Kubo, Coord. Chem. Rev., 21, 1(1978).

- 6. D.K.Hodgson, Prog. Inorg. Chem., 23, 211 (1977).
- 7. C.Preti and G.Tosi, Can. J. Chem., 54, 1558 (1976).
- L.M.Butler, J.R. Creigton, R.E.Oughtred, E.S.Raper and I.W.Nowel, Inorg. Chim. Acta., 75, 149 (1983).
- 9. Galal E. H. Elgemeie and Badria A. W. Hussain, Tetrahedron, 50(1), 199-204 (1994).
- 10. Geary, W. J, coord. Chem. Rev., 7, 81 (1971).
- 11.Ragab R. Amin and Galal E. H. Elgemeie, Synth. React. Inorg. Met. Org. Chem., 31(3), 431-440 (2001).
- 12.M. Abd-El-Mottalb, S.M. Abo-El-Wafa and Y. Z. Ahmed, Egypt. J. Chem., 28 (5), 367-374 (1985).
- 13.Saxena S. B, Agarwal Y. K, Spectrophotometric Determination of the Stability Constant of 4-Substituted Thiosemicarbazides with Co<sup>2+</sup>, Ni<sup>2+</sup> and Cu<sup>2+</sup> Systems. J. Ind. Inst. Sci, 66, 13-19 (1986).
- 14.Khalifa M. E, Rakha T. H, M. M. Bekheit, M. M. ligational Behaviour of 1-Picolinoyl-4phenyl-3-tiosemicarbazid (H2PTS) Towards some Transition Metal Ions, Synth. React. Inorg. Met.-Org. Chem., 26(7), 1149-1161 (1996).
- 15.El-Asmy A. A, Al-Ansi T. Y, Amin R. R, Physicochemical Studies on Transition Metal Complexes of 1-Oxalylbis(4-phenylthiosemicarbazide). Bull. Soc. Chim. Fr, 127, 39-42 (1991).
- 16.El-Asmy A. A, Mabrouk H E, Al-Ansi T. Y, Amin R. R, El-Shahat M. F, Binuclear Complexes of Some Transition Metal Ions with 1,1',3,3'-Propanetetracarbohydrazide. Synth. React. Inorg. Met.-Org. Chem., 23(10), 1709-1726 (1993).
- Amin R. R, Coordination Compounds of Quadridentate Thiosemicarbazone: Their Preparation, Characterization and Structural Investigation, Asian J. Chem., 12(2), 349-354 (2000).
- 18. Macias B, Villa V. M, Gallego R. R, Tran. Met. Chem., 20, 347 (1995).
- 19. Sanyal G. S, Nath P. K. and Ganguly R, J Indian Chem Soc., 79, 54 (2002).
- 20. Thaker, B.T., Patel, A., Thaker, P., J. Indian Chem., A 35, 483-488 (1996).
- Deepak Shukla, Lokesh Kumar Gupta, Sulekh Chandra. Spectrochimica Acta, Part A 71, 746–750 (2008).
- 22.B. N. Figgis, Introduction to Ligand Field Theory, Wiley, New York, (1978).
- 23.S. Chandra, K. Gupta, Trans. Met. Chem., 27, 196 (2002).
- 24.S. Chandra, K. Gupta, S. Sharma, Synth. React. Inorg. Met.-Org. Chem., 31, 1205 (2001).
- 25.Krishna C. H, Mahapatra C. M. and Dush K. C, J. Inorg. Nucl. Chem., 39 1253 (1977).
- 26.N RAMAN, S RAVICHANDRAN And C. THANGARAJA, J. Chem. Sci., Vol. 116, No. 4, July, Pp. 215–219 (2004).

#### SYNTHESIS, CHARACTERIZATION AND THERMAL STUDIES ... 125

- 27.A. A. Razik, A. K. A. Hadi, Trans. Met. Chem., 19, 84 (1994).
- 28.F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry. The Elements of First Transition Series A, Wiley-Interscience Publication, New York, 1988.
- 29. Dubey S. N. and Kaushik B, Indian J. Chem., 24A, 950 (1985).
- 30.Liver A. B. P. Inorganic Electronic Spectroscopy, Elsevier Amsterdam, 4<sup>th</sup>, Ed., 1984.
- 31.Lotf A. Saghatforoush, Ali Aminkhani, Sohrab Ershad, Ghasem Karimnezhad, Shahriar Ghammamy and Roya Kabiri, Molecules, 13, 804-811 (2008).
- 32.Majumder A, Rosair G. M, Mallick A, Chattopadhyay N, Mitra S, Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N, N,O-tridentate Schiff base N-2- pyridylmethylidene-2-hydroxy-phenyl-amine Polyhedro -n, 25, 1753-1762 (2006).
- 33. Chohan Z. H. and Parvez H. H. Synth. React. Inorg. Met.-Org. Chem., 23, 1061 (1993).
- 34. Sekerci M, and Tas E. Heteroatom Chem., 11, 254 (2000).
- 35. S. Goel, O. P. Pandey and S. K. Sengupta, Thermochim. Acta, 133, 359-364 (1988).
- 36.P. B. Maravalli and T. R Goudar, Thermochim Acta, 325, 35-41 (1999).
- 37.A. W. Coats and J. P. Redfern, Nature, 20, 68 (1964).
- 38.H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963).
- 39.S. Glasston, Text Book of Physical Chemistry, 2<sup>nd</sup> ed., Macmillan, Indian, 1103 (1974).
- 40.R. K. Agrawal, S. C. Rastogi, Thermochim. Acta, 63, 363 (1983).
- 41.V. V. Savant, P. Ramamurthy, C. C. Patel, J. Less Common Metals, 22, 479 (1970).
- 42.A. K. Srivastava, S. Sharma, R. K. Agrawal, Inorg. Chim. Acta, 61, 235 (1982).
- 43.K. Arora, Asian J. Chem., 7, 508 (1995).
- 44.N. S. Bhave, V. S. Iyer, J. Therm. Anal., 32, 1369 (1987).
- 45.N. Calu, L. Odochian, G. L. Brinzan, N. Bilba, J. Therm. Anal., 30, 547 (1985).
- 46.H. S. Bhojya Naik, Siddaramaiah, P. G. Ramappa, Thermochim. Acta, 2998 (1996