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Abstract. In this paper we want to show that Halley’s function for real polynomial
is an increasing rational homeomorphism map on R.
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Introdunction

Halley's method is an elegant method for finding roots and a third-order algorithm.
Such an algorithm converges cubically insofar as the number of significant digits
eventually triples with each iteration. And not only does the first derivative of a
third-order iteration vanish at a fixed point, but so does the second derivative. In this
paper, we recall some definitions, theorems for Halley’s function for a real polynomial
and the derivative of Halley’s function. Then we conclude that Halley’s function for
real polynomial is an increasing rational homeomorphism map on R.

0.1 Halley’s method for real polynomials
In this section, our chjective is to study the iteration of Halley's function associated

with a polynomial p of degree d with real coefficients and only real {and simple) zercs
Zx, 1 < k < d. This method is equivalent to iterating the rational map

2p(2)piz)
Hyz)=2 - — ; —, (0.1.1

= - ) o)
where

pz)=ag+mzt a2+ . a2 et

So if p(z) has degree d and has distinet roots, then by a simple calculation iz is
a rational map of degree 2d — 1. As for the case of Newton’s method, the roots of
piz) are fixed points of Hy{z), although other fixed points exist as well. Since we are

assuming that the roots of p{z) are distinct, the critical points of p{z) are also fixed
points under Halley’s method.
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0.2 Derivative of Halley’s method
The derivative of Halley’s method is

, (p2))25]p] (2 \
Hi(z) = ~—2(2) p[p]-; J] " (0.2.1)
T — plelpri=
2(p(2) - 2)

where 5p]{z) is the Schwarzian derivative of p(z), that is

n’ I 2
o Pz} 3 (-p”aﬂ) ,
Slpliz) =t = S [ 22 . 0.2.2
P =51 "2\ o) 022
From expression {0.2.1), we can see that the roots are super-attracting fixed points,
but of one degree higher order than for Newton’s method.
As we know that the degree of Halley’s function is 2d— 1, where o i the depree of the
polynomial p, there are 44 — 4 critical points, 2d of them coincide with the roots &,
and 2d — 4 are free critical points placed at points where the Schwarzian derivative
of p{z) vanishes.
Hemark 0.2.1. The second derivative of H, vanishes at x, where as the second deriva-
tive of N, does not, the graph of K, is flatter than that of N, near the fixed point.
This accounts for the difference in speed at which the two algorithms comverge (see
[6], [3] for details). In general, the higher the order, the flatter the graph, the faster
COMVET ZENCe.

Theorem 0.2.1. Let

L 2ee)

2(p'(2))? - pl2)p"(z)’
where p 18 o polynowmial with rea! (ond simply) distinet zeros. Then H, hos no real
pole,

Proof We will show that

WE-m">0 on R,
which is lmown as Polya’s result.

Write .
i N ;r__zﬂ__zﬂ__z (Ii) _P_”
@)Y -m =p = P =r iy ik

(p’)2 ( 201 )2
— = 3
P -y

We know that
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Hixjior {r3-x)
2_

Figure 1: [alley's function for the polynomial plz) = 2° = =

where z; are roots of p, 1 < j < d, hence

i L= |
P ;3—% ;{3—%]2'
From
1
Z,.__2 >0, ze R,
=1 ¥ ;)
it follows that 2 ,
5)>5
r r
hence
2/ - > 0.

Thus H, does not have any real pole.
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Figure 2: Ilalley's function for the polynomial piz) = 2 = £z° + #z° = &

e

Theorem 0.2.2. Let Hy{z) be a Hulley's function for e polynomialp(z), then H}{z) >
Don R

Proof We know that

o 28' 14
H;{z] —— l\.pll.zJJ [f]:rfi] =
2 (P’{z] - ﬁm;&-)
where S[p)(z) is the Schwarzian derivative of p{z), that is
sipiin < 22 3 (p#(z))* _ 2 =3P
' piz)  2\r2) 2 )?
To show that f}{z) = 0, we have to prove that S[p|{z) < 0. By the same proof as

before, we can see that {")? — g™ > 0, then 2pp” — 3(p"1? =< 0. Thus Sp|{z) < 0,
implies H,{z) = 0. O

Conclusion 1. From theorems {0.2.1} and (0.2.2), we conclude that H, is an in-
creasing rational homeomorphism map on R.
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