Al-Azhar Bulletin of Science

Volume 22 | Issue 2 Article 5

12-1-2011

Section: Chemistry

MORPHOLOGY AND MICROSTRUCTURE OF TRICALCIUM ALUMINATE HYDRATE PASTES AFTER HYDRATION IN PRESENCE OF INORGANIC ADMIXTURES

M. TAHER

Chemistry Dept., Faculty of Science, Al Azhar University, Assiut, Egypt

A. AL-SULAMI

Sciences Faculty for Girls, King Abdul Aziz University, Saudi Arabia

Follow this and additional works at: https://absb.researchcommons.org/journal

Part of the Life Sciences Commons

How to Cite This Article

TAHER, M. and AL-SULAMI, A. (2011) "MORPHOLOGY AND MICROSTRUCTURE OF TRICALCIUM ALUMINATE HYDRATE PASTES AFTER HYDRATION IN PRESENCE OF INORGANIC ADMIXTURES," AI-Azhar Bulletin of Science: Vol. 22: Iss. 2, Article 5.

DOI: https://doi.org/10.21608/absb.2011.7013

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh_Mekheimer@azhar.edu.eg.

MORPHOLOGY AND MICROSTRUCTURE OF TRICALCIUM ALUMINATE HYDRATE PASTES AFTER HYDRATION IN PRESENCE OF INORGANIC ADMIXTURES

M.A.TAHER^a AND A.I.AL-SULAMI^b

^aChemistry Dept., Faculty of Science, Al Azhar University, Assiut, Egypt. ^bSciences Faculty for Girls, King Abdul Aziz University, Saudi Arabia

Abstract

Tricalcium aluminate is considered as one of the most important material in the main inorganic compounds that constitute the cement. It plays an important role in controlling hydraulic characteristics for cement and leads to strength of concrete. Although its percent do not exceed (7-12%), of the total essential compounds constituting cement material, but it acquired special importance through its capability of reserving cement in a form paste, it can be handled easily during construction when water is add to cement. It is responsible of setting time in cement mixture so can be adjusted according to different whether conditions. To adjust setting time, organic or inorganic compounds must be added to cement mix in the presence of water to accelerate or retard hydration process according to the type of added admixture. In this study, the effect of inorganic admixtures (Ca(OH)2, Al(OH)3, CaCl2 and CaSO4, 2H2O) on the hydration of tricalcium aluminate hydrate pastes after different periods was investigated using scanning electron microscope (SEM). The results indicated that Al(OH)₃ accelerate the hydration process while mixture of Ca(OH)₂ and CaSO₄.2H₂O retard this process. Presence of Al(OH)₃ with CaCl₂ accelerate the hydration process . Presence of Al(OH)₃ with mixture of Ca(OH)₂ and CaSO₄.2H₂O decreased the retarding effect of this mixture on hydration process.

Abbreviations: C=CaO, S=SiO₂, A=Al₂O₃, H=H₂O, F=Fe₂O₃,

Keywords: tricalcium aluminate, hydration, inorganic admixture, improvement of

the cement..

Corresponding Author : M.A. Taher *E.mail*: mahmoudtaher51@hotmail.com

Introduction:

Scanning electron microscopy (SEM) is a powerful technique for analyzing cement-based materials [1], and has been applied successfully to cement clinkers [2], cement powders [3,4] and hydrated cement pastes and concretes[5]. The SEM provides high contrast images that can be segmented to identify the component phases comprising the complex microstructure. Tricalcium aluminate (C₃A) is one of the main crystalline phases of cements [1]. It plays a fundamental role in the early stages of hydration process of Ordinary Portland Cements and Calcium Aluminate Cements. The reaction of C₃A with water produces calcium aluminate hydrate, Afmtype phases (C₃A.CaSO₄.12H₂O) according to the cement nomenclature, and the more thermodynamically stable hydrogarnet (C_3AH_6) [1,6]. The hydration of C_3A is a strongly exothermic reaction and if the kinetics is not controlled, the so called "flash-setting" of cement may occur with undesirable effect on the rheological properties of the hydrating paste [1]. In order to prevent this reaction in cements, Casulphate is usually added to the clinker [7]. When sulphates are present, ettringite is the phase crystallizing during the hydration of C₃A and the reaction is less exothermic. It is known from XRD analyses that crystalline ettringite is present since the early stages of hydration of the C₂A paste [8]. Moreover observations performed by scanning electron microscopy show that at the beginning of the process ettringite appears with a gel-like morphology. The characteristics of the ettringite gel are thought to play a fundamental role in controlling both the dissolution kinetics of the clinker phases and the formation of hydrates. Ettringite, also called Aft-type phase, C₃A·3CaSO₄·32H₂O, is triagonal and the crystal structure is composed of columns of alternately Ca-(O,OH) and Al-(O,OH) octahedra along the c direction [9]. The columns are connected by SO₄ groups and water molecules, located in fairly large channels running parallel to the columns. Ettringite is present in the first hours of OPC hydration indicating that C₃A and C₄AF are the most reactive phases in the early stages of the hydration process [10]. Calcium chloride (CaCl₂) is one of most of hydration effective material for accelerate and setting in tricalcium silicate (C₃S) and Portland cement pastes. The accelerative power of this salt increases with increasing concentration, with a practical dosage being 1–2% by weight of cement. It has often been observed that CaCl2 increases the rate of formation of hydration products, thereby increasing the rate of heat evolution during hydration. This acceleration is thought to occur by direct acceleration of the growth rate of calcium silicate hydrate (C-S-H), but the mechanism is not understood at the molecular level [6]. It is to be expected that accelerating the hydration reaction would affect the microstructure of the hydration products. Calcium chloride is known to increase the nitrogen surface area and pore volume of Portland cement and C₃S pastes [11–13]. The investigated using a variety of microscopy effects of CaCl₂ on microstructure have been techniques. Early work using transmission electron microscopy (TEM) for samples less than 1 day old showed fibrous growths in the presence of CaCl₂ [14], forming in a cross-linked network in one case [15]. In contrast, further electron microscope work on samples with ages of 10–30 days

described C₃S hydration products as small needles in the absence of CaCl₂, and "crumpled foils" or plates in its presence [11,16]. The use of scanning electron microscopy (SEM) allows a greater depth of focus; using this technique, researchers saw "honeycomblike" morphologies of hydration products in the presence of CaCl₂ at ages of 3 h to 7 days [17–19], agreeing with the previous cross-linked observations. Ramachandran and Feldman [20] noticed that the morphology of hydration products (older than 1 day) varied depending on the amount of CaCl₂ added to cement pastes. In the absence of CaCl₂, needles of C-S-H and ettringite were the primary morphology observed. At a dosage of 1% CaCl₂, thin sheets of C-S-H appeared. Increasing the dosage to 2% consolidated the structure, and plates were observed. Addition of 3.5% CaCl₂ resulted in a "spongy mass." TEM on pastes older than 1 year showed similar results to the SEM studies—less fibrillar hydration products when CaCl₂ was present [21].

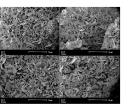
The object of this work is to study the change in morphology and microstructure of tricalcium aluminate pastes after hydration in presence of different inorganic admixtures ($Ca(OH)_2$, $Al(OH)_3$, $CaSO_4.2H_2O$ and $CaCl_2$) at different periods of hydration (1 hr, 3 hr, 7 hr, 1 day, 7days, 14 days and 28 days) using scanning electron microscopy (SEM) measurements .

Experimental:

Tricalcium aluminate hydrate (C_3AH_6) was prepared according to the following equation [22]:

$$3Ca(OH)_2 + 2Al(OH)_3 \rightarrow 3CaO.Al_2O_3.6H_2O$$

Starting powder of $Ca(OH)_2(99\%+ Merck, Darmstadt)$ was weighed in appropriate amount(3moles) and then dissolved in distilled water with continuous stirring in water- bath at $30^{\circ}C$ to produce a suspended solution of $Ca(OH)_2$. Appropriate amount of $Al(OH)_3(2moles)$ (99%+ Merck, Darmstadt, Germany) was weighed and dissolved in distilled water with continuous stirring in water bath at $30^{\circ}C$ to produce a suspended of white solution of $Al(OH)_3$. $Ca(OH)_2$ suspended solution was added carefully to $Al(OH)_3$ suspended solution with continuous stirring in water bath at $30^{\circ}C$, then the produced suspended solution and left one hour in water bath then measuring the pH value. Finally, the produced suspension solution left for 24 hours up to the pH value equal 13, where as there is complete formation of C_3AH_6 . The suspended solution was filtrated with suction through a Schott 1G4 sintered glass filter.. The produced precipitate (C_3AH_6) was washed with ether. In our study, we prepared C_3AH_6 as mentioned above but with different cases as follows:

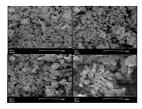
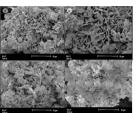

- i- C₃AH₆ in excess Ca(OH)₂ (4 moles Ca(OH)₂ + 2moles Al(OH)₃).
- ii- C_3AH_6 in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$ ($4moles\ Ca(OH)_2$ + $2moles\ Al(OH)_3$ + $1\ moles\ CaSO_4.2H_2O)$).
- iii- C_3AH_6 in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$ and $Al(OH)_3$ (4moles $Ca(OH)_2 + 3$ moles $Al(OH)_3 + 1$ mole $CaSO_4.2H_2O$)).
- iv- C_3AH_6 in presence of $CaCl_2$ and excess $Ca(OH)_2$ (4 moles $Ca(OH)_2 + 2$ moles $Al(OH)_3 + 1$ mole $CaCl_2$).
- v- C_3AH_6 in presence of $CaCl_2$ and excess $Al(OH)_3$ ($3moles\ Ca(OH)_2 + 3moles\ Al(OH)_3 + 1\ mole\ CaCl_2$).

For each case, first there is preparation of C_3AH_6 as mentioned above then addition of admixtures ($CaSO_4.2H_2O$ or $CaCl_2$) to the prepared C_3AH_6 for studying the hydration process after different periods (1hr, 3hr,7 hr; and 1day, 7days, 14 days and 28 days). The precipitate was washed with mixture of ethyl alcohol and ether (1:1) to stopping of further precipitation and kept in desiccators to dry the products. The change in morphology and microstructure of C_3AH_6 at different conditions (1,3 and 7 hr; and 1,7,14 and 28 days) was studied using SEM technique.

Results and discussion:

Fig.1(a,b,c,d), Fig.2(a,b,c,d) and Fig.3(a,b,c,d) show the SEM micrographs of. C_3AH_6 pastes after 3hrs, 7days and 14 days hydration, respectively, in presence of excess $Ca(OH)_2$. It is clear that, there is no formation of amorphous or crystalline products at 3 hrs hydration (Fig.1), but there are irregular shapes of ettringite. After 7days and 14 days of hydration (Figs.2 and 3), the structure was closed, but still with formation of poor gel-like crystal structure. This mean that low hydraulic properties of C_3AH_6 pastes [23]. The presence of excess $Ca(OH)_2$ retards the hydraulic properties of of C_3AH_6 due to the increasing in formation of ettringite [24].

The SEM micrographs of C_3AH_6 pastes after 7hrs , 1 day and 14 days hydration in presence of $CaSO_4.2H_2O$ and excess $Ca(OH)_2$ was illustrated in Fig.4(a,b,c,d), Fig.5(a,b,c,d) and Fig.6(a,b,c,d), respectively. It is clear that there formation of ill-crystalline and amorphous layer after 7 hours due to initial hydraulic activation and formation of ettringite as monosulphate phase (AFm ,3CaO.Al $_2O_3$.CaSO $_4.12H_2O$) in presence of low concentration of $CaSO_4.2H_2O$ which disappear after 1 day forming poor amorphous phase with increasing the crystalline phase after 14 days due to the formation of ettringite as trisulphate phase (AFt, 3CaO.Al $_2O_3.3CaSO_4.32H_2O$) which causes decreasing in the hydraulic properties of C_3AH_6 [25].

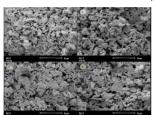
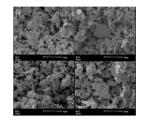
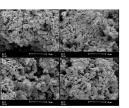


Fig 1.: SEM micrographs pastes after 3 hrs hydration in presence of excess Ca(OH)2

Fig 2.: SEM micrographs of C₃AH₆ pastes after 7hydration days in presence of excess Ca(OH)₂.

Fig.3: SEM micrographs of C₃AH₆ pastes after 14 days hydration in presence of excessCa(OH).




Fig 4.: SEM micrographs of C₃AH₆ pastes after 7 hrs hydration in presence of CaSO₄.2H₂O and excess Ca(OH)₂

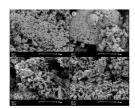

Fig.5.: SEM micrographs of C₃AH₆ pastes after 1 day hydration in presence of CaSO₄.2H₂O and excess Ca(OH)₂

Fig.6: SEM micrographs of C₃AH₆ pastes after 7 days hydration in presence of CaSO₄.2H₂O

The SEM micrographs of C₃AH₆ pastes after 1hr, 7 hrs and 1 day hydration in presence of CaSO₄.2H₂O and excess of Ca(OH)₂ and Al(OH)₃ are shown in Fig.7(a,b,c,d), Fig.8(a,b,c,d) and Fig.9 (a,b,c,d), respectively. There is formation of mix of amorphous and ill-crystalline phase after 1 hr and formation of closed texture at 1 day hydration due to the presence excess of Al(OH)₃ which leads to an increasing in the hydraulic properties of C₃AH₆ pastes. The presence of excess Al(OH)₃ decrease the formation ettringite which has high crystalline properties [26].

Fig.10(a,b,c,d), Fig.11(a,b,c,d), and Fig.12(a,b,c,d) show the SEM micrographs of C₃AH₆ pastes after 1 hr, 7hr and one day hydration in presence of CaCl₂ and excess Ca(OH)₂, respectively. The micrographs indicated a formation of uncombined particles after 1 hr with high crystalline properties producing a low of hydraulic properties [27]. Moreover, after 7 hours of hydration there is a decreasing in the porosity and formation of amorphous and ill-crystalline phase indicated high hydraulic properties of the pastes. At 1 day hydration, there is an increasing in the amorphous and ill-crystalline phase with formation of closed texture phase indicating increasing in the hydraulic properties of C₃AH₆ pastes. Therefore the addition of CaCl₂ in presence of Ca(OH)₂ accelerate the hydration of C₃AH₆ and increase the hardening process [28].

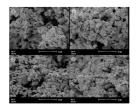


Fig.7: SEM micrographs of C₃AH₆ pastes after 1 hr hydration in presence of CaSO₄.2H₂O and excess Ca(OH)₂ and Al(OH)₃

Fig.8: SEM micrographs of C₃AH₆ pastes after 7 hrs hydration in presence of CaSO₄.2H₂O and excess Ca(OH)₂ and Al(OH)₃

Fig.9: SEM micrographs of C₃AH₆ pastes after 1 day hydration in presence of CaSO₄.2H₂O and excess Ca(OH)₂ and Al(OH)₃.

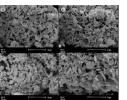


Fig.10: SEM micrographs of C₃AH₆ pastes after 1 hr hydration in presence of CaCl₂ and excess Ca(OH)₂

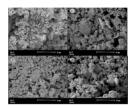


Fig.11: SEM micrographs of C₃AH₆ pastes after 7 hrs hydration in presence of CaCl₂ and excess Ca(OH)₂

Fig.12: SEM micrographs C₃AH₆ pastes after 1 day hydration in presence of CaCl₂ and excess Ca(OH)₂

The change in morphology and microstructure of C_3AH_6 pastes after 7 hrs, 7days and 14 days hydration in presence of $CaCl_2$ and excess $Al(OH)_3$ are shown in SEM micrographs of Fig.13(a,b,c,d), Fig.14(a,b,c,d) and Fig.15(a,b,c,d), respectively. It is clear that, presence of $Al(OH)_3$ increase the amorphous layers of the pastes which causes increasing in the bonding between crystalline layers and formation of amorphous and ill- crystalline phase after 7 hrs of hydration . After 7 days, there is increasing in the condensed structure of the amorphous and ill-crystalline phase with high coagulation of the layers which increase sharply after 14 days forming closed-textured structure having high hydraulic properties and high hardening process of C_3AH_6 [29].

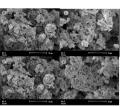


Fig.13: SEM micrographs of C₃AH₆ pastes after 7 hrs hydration in presence of CaCl₂ and excess Al(OH)₃

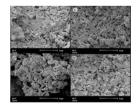


Fig.14: SEM micrographs of C₃AH₆ pastes after 7 days hydration in presence of CaCl₂ and excess Al(OH)₃

Fig.15: SEM micrographs C₃AH₆ pastes after 14 days hydration in presence of CaCl₂ and excess Al(OH)₃

Conclusion

From this investigation we concluded that:

- 1- Presence of excess Ca(OH)₂ retards the hydration of C₃AH₆ at the earlier ages of hydration, but this retardation disappeared at later ages (after 7 days).
- 2- Presence of excess Al(OH)₃ accelerates the hydration of C₃AH₆ at all ages of hydration.
- 3- Presence of excess Ca(OH)₂ in the hydration process of C₃AH₆ in presence of CaSO₄.2H₂O causes an increasing in the formation of ettringite (AFt), accordingly, the hydraulic properties of C₃AH₆ will be decrease.
- 4- Presence of excess Al(OH)₃ in the hydration process of C₃AH₆ in presence of CaSO₄.2H₂O and excess of Ca(OH)₂ causes a decreasing in the formation of ettringite, accordingly, the hydraulic properties of C₃AH₆ will be increased and the bad effect of formation of high amount of ettringite on the hydraulic properties of C₃AH₆ will be disappeared.
- 5- Presence of excess $Al(OH)_3$ in the hydration process of C_3AH_6 in presence of C_3Cl_2 accelerates the hydration process and increases the hydraulic properties of C_3AH_6 at all ages of hydration.

References

- 1. H.F.W. Taylor, Cement Chemistry (2nd ed.), Thomas Telford, Publishing London, (1997).
- P.E.Stutzman., "Cement clinker characterization by scanning electron microscopy", Cem.Concr.Aggregates, Vol.2, 109-114(1991).
- 3. D.P. Bentz and P.E. Stuzman, "SEM analysis and computer modeling of hydration of Portland cement particles". In Petrography of Cementitious Materials Ed.S.M.Dehayes and D.Stark(American Society for Testing and Materials, Philadephia,, pp.60-73,(1994)..
- K.L.Scrivener, "The microstructure of anhydrous cement and its effect on hydration.", Proc.Mat.Res.Soc.Symp., Vol.85, 39-46(1987).
- K.L.Scrvener and P.L.Scrvener, "The microstructure of concrete", In. Materials Science of Concrete I ED.J.P.Skalny(American Ceramic Society, Westerville, OH, pp.127-161(1987).
- E.M. Gartner, J.F. Young, D.A. Damidot and I. Jawed, "Hydration of Portland Cement.", In: J. Bensted and P. Barnes (Eds), "The Structure and Performance of Cements, 2nd ed., Spon Press, London 2002. Chapter 3.
- 7. J. Bensted, "Gypsum in Cements", In: J. Bensted and P. Barnes, Editors, "Structure and Performance of Cements", Spon Press, London (2002).
- 8. P. Barnes et al.," The Use of Synchrotron Sources in the Study of Cement Materials". In: J. Bensted and P. Barnes, Editors, Structure and Performance of Cements, Spon Press, London (2002).
- 9. A.E. Moore and H.F.W. Taylor, "Crystal structure of ettringite", Acta Crystallogr. , B26 , pp. 386–393(1970).
- M.Merlini ,G.Artioli , T.Cerulli, F.Cella, A.Bravo, , "Tricalcium aluminate hydration in additivated systems. A crystallographic study by SR-XRPD ", Cement and Concrete Research , 38,477–486(2008).
- 11. M. Collepardi, and B. Marchese, "Morphology and surface properties of hydrated tricalcium silicate pastes", Cem. Concr. Res., 2, 57–65(1972).

- 12. J. Skalny, I. Odler, and J. Hagymassy, "Pore structure of hydrated calcium silicates": I. Influence of calcium chloride on the pore structure of hydrated tricalcium silicate", J. Colloid Interface Sci. 35 (3) ,434–441(1971).
- 13. M.C.G. Juenger, and H.M. Jennings, "The use of nitrogen adsorption to assess the microstructure of cement pastes", Cem. Concr. Res., 31, 883–892(2001).
- 14. A.M. Rosenberg, "Study of the mechanism through which calcium chloride accelerates the set of Portland cement", J. Am. Concr. Inst.,61,1261–1269(1964).
- 15. K. Murakami, and H. Tanaka, "Contribution of calcium thiosulphate to the acceleration of the hydration of Portland cement and comparison with other soluble salts", Proceedings of the 5th International Congress on the Chemistry of Cement, Tokyo, vol. 2, The Cement Association of Japan, Tokyo, Japan, 1969, pp. 422–436.
- 16. V.S. Ramachandran, "Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride", Mater. Constr. ,4, 3 –12(1971).
- 17. J.F. Young, R.L. Berger, and F.V. Lawrence, "Studies on the hydration of tricalcium silicate pastes: III.Influence of admixtures on hydration and strength development", Cem. Concr. Res., 3,689–700(1973).
- 18. R.L. Berger, J.H. Kung, and J.F. Young, "Influence of calcium chloride on the drying shrinkage of alite paste", J. Test. Eval., 4,85–93(1976).
- 19. P.J. LeSueur, D.D. Double, and G.W. Groves, "Chemical and morphological studies of the hydration of tricalcium silicate", Br. Ceram. Proc., 35,177–191(1984).
- 20. V.S. Ramachandran, and R.F. Feldman, "Time-dependent and intrinsic characteristics of Portland cement hydrated in the presence of calcium chloride", Cemento, 3,311–322(1978).
- 21. G.W. Groves, P.J. LeSueur, and W. Sinclair, "Transmission electron microscopy and micro analytical studies of ion-beam-thinned sections of tricalcium silicate paste", J. Am. Ceram. Soc., 69, 353–356(1986).
- 22. Q.Zhang, and F.Saito, "Sonochemical synthesis of ettringite from a powder mixture suspended in water", Powder Technology ,107, 43-47(2000).
- 23. P. Garces, E.G. Alcocel, S.Chinchon, C.G. Andreu and J. Alcaide, " Effect of curing temperature in some hydration characteristics of calcium aluminate cement compared with those of Portland cement", Cem.Concr.Res., 27(9), 1343-1355(1997).
- 24. S. Pourchet, L. Regnaud, J.P. Perez, and A. Nonat, "Early C3A hydration in the presence of different kinds of calcium sulfate", Cem. Concr Re., 39, 989–996(2009).
- A.M.Cody, H.Lee, R.D.Cody and P.G.Spry," Reduction of concrete expansion ", Cem.Concr.Res.,34(8), 869-881(2004).
- M.Merlini, G.Artioli, T.Cerulli, F.Cella and A.Bravo "Tricalcium aluminate hydration in additivated systems, A crystallographic study by SR- XRPD", Cem.Concr.Res., 38(4), 477-486 (2008).
- 27. P.Meredith , A.M.Donald, N.Meller and C.Hall," <u>The effects of chemical growth</u>, and <u>stability of ettringite"</u>, [Ca₃Al(OH)₆].2(SO₄)₃·26H₂O", J.Materials Science, 39, 997-1005(2004).
- S. Ouellet, B. Bussière, M.Aubertin and M. Benzaazoua, "Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results", Cem.Concr.Res., 37, 1654 –1665 (2007).
- 29. M.A.Taher, "Influence of thermally treated phosphogypsum on the properties of Portland slag cement", Resources, Conservation and Recycling Journal, 52, 28-38 (2007).