Al-Azhar Bulletin of Science

Volume 20 | Issue 1

Article 17

6-1-2009 Section: Chemistry

PHYSICOCHEMICAL STUDIES ON SOME HYDRAZONE COMPLEXES

HAMDY HAMMAD Chemistry Department, Faculty of Science, Al -Azhar University, Cairo, Egypt.

Follow this and additional works at: https://absb.researchcommons.org/journal

Part of the Life Sciences Commons

How to Cite This Article

HAMMAD, HAMDY (2009) "PHYSICOCHEMICAL STUDIES ON SOME HYDRAZONE COMPLEXES," *Al-Azhar Bulletin of Science*: Vol. 20: Iss. 1, Article 17. DOI: https://doi.org/10.21608/absb.2009.7554

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh_Mekheimer@azhar.edu.eg.

PHYSICOCHEMICAL STUDIES ON SOME HYDRAZONE COMPLEXES

HAMDY A. HAMMAD

Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt

Abstract

Some hydrazones and their complexes were prepared in order to study their molecular structures. The hydrazones were prepared by condensing p-aminobenzoic acid hydrazide with some aldehydes. The of Cu(II), Ni(II) and Co(II) were prepared and characterized by elemental analysis, magnetic, electronic and IR methods.

Introduction

Acid hydrazides and hydrazones received a considerable attention as antibacterial substances⁽¹⁾, catalytic⁽²⁾ and versatile chelating agents^(3,4). A survey of literature reveals that a considerable amount of work on their transition metal complexes have been carried out⁽⁵⁻¹⁶⁾.

The present paper reports the results of synthesis, characterization and of Cu(II), Ni(II) and Co(II) acetate with P-aminobenzoyl salicyl hydrazone (ABSH) and P-aminobenzoyl naphthyl hydrazone (ABNH), in order to investigate their molecular structures.

Experimental

All chemicals used are of pure grade p-amino-benzoic acid hydrazide was prepared by previous method⁽¹⁷⁾. ABSH and ABNH were prepared by condensing paminobenzoic acid hydrazide with salicylaldehyde and o-hydroxynaphthaldehyde. The products were crystallized from ethanol. Metal complexes were prepared by refluxing aqueous ethanolic solution of the ligand and metal acetate in the appropriate ratio (1:1) for two hours. After cooling the complexes were filtered off, washed with ethanol and dried in vacuo. The complexes were chemically analysed for C, H, N and metals and the results are given in Table (1). Magnetic susceptibility measurements were obtained at room temperature using Gouy method. Electronic spectra were recorded as NaCl disks, where small amount of complexes were mixed with 0.1 gm NaCl. The electronic spectra were recorded using Perkin-Elmer λ_{20} spectrophotometer. Infrared spectra of the complexes were measured using Perkin-Elmer Spectrum 1 spectrophotometer.

Results and Discussion

HAMDY A. HAMMAD

20 0

The prepared complexes were analysed and their elemental analysis (Table 1) indicate that these complexes possess 1:1 (metal : ligand) stoichiometry. The IR spectra are listed in Table (II). The IR spectra of the ligands indicate the presence of amide I (vC=O), azomethine (vC=N), amide II (δNH), occurring at about 1710, 1620 and 1600 cm⁻¹ respectively, while δ OH and vCO bands appeared at 1350 and 1170 cm⁻¹. The comparison between the spectra of the ligands and the spectra of complexes indicate that vC=O is shifted to higher frequency in the spectra of complexes. It is thus believed that C=O group does not participate in complex formation. The inspection of the spectra of complexes reveals remarkable shifts to lower frequency in the azomethine, amide II and vCO bands upon complexation. Furthermore, the absorption bands at about 1355 cm⁻¹, attributable to δOH in the free ligands, disappeared in the spectra of these complexes. These changes in the group vibrations of the azomethine and CO absorption, beside the disappearance of δOH mode are consistent with the coordination through the phenolic oxygen and azomethine nitrogen. The changes in the position and intensity of the broade absorption bands at about 3400 cm⁻¹, in addition to weak absorption peaks at about 780 and 510 cm⁻¹ in the IR spectra of these complexes, indicate the presence of coordinated water molecules⁽¹⁸⁾. In addition the spectra of complexes contain strong absorption bands at about 1600 and 1540 cm⁻¹, characteristic of the coordinated acetate ion⁽¹⁹⁾.

Magnetic susceptibility measurements showed that all complexes are paramagnetic. The obtained values of the effective magnetic moment (μ_{eff}) indicate that the complexes have octahedral symmetry⁽²⁰⁾. The data are listed in Table (3). The electronic spectra of the ligands and their complexes were recorded as NaCl disks. The colour and electronic spectral data for complexes are given in Table (3). The data indicated that these complexes are octahedrally coordinated⁽²¹⁾ in agreement with the conclusions from the magnetic susceptibility measurements. On the basis of preceding discussion, the suggested structure of the metal chelates under investigation is shown in Fig. (1).

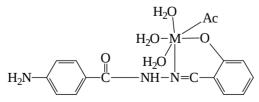


Figure (1): Proposed structure for metal-chelates.

Comment		Mart	Malasular Farmula	Chemical Analysis Calculated/Found			
Compound	m.p.	M wt	Molecular Formula		1		
				С	Н	Ν	М
ABSH	82	254	$C_{14}H_{12}N_3O_2$	66.1	4.7	16.5	—
				65.8	4.4	16.4	
Cu2+-ABSH	162	429	$C_{14}H_{11}N_3O_2CuAc3H_2O$	44.7	4.6	9.7	14.6
				44.5	4.2	9.3	14.3
Ni ²⁺ –ABSH	<300	424	$C_{14}H_{11}N_3O_2NiAc3H_2O$	45.2	4.7	9.9	13.6
				44.0	4.5	9.7	13.2
Co ²⁺ –ABSH	270	424	$C_{14}H_{11}N_3O_2CoAc3H_2O$	45.2	4.7	9.9	13.6
				44.1	4.6	9.6	13.4
ABNH	130	304	$C_{18}H_{14}N_3O_2$	71.0	4.6	13.8	
				70.8	4.3	13.6	
Cu2+ ABNH	208	479	$C_{18}H_{13}N_3O_2CuAc3H_2O$	50.1	4.5	8.7	13.1
				49.7	4.3	8.5	12.9
Ni ²⁺ – ABNH	<300	474	C ₁₈ H ₁₃ N ₃ O ₂ NiAc3H ₂ O	50.6	4.6	8.8	12.2
				50.2	4.5	8.6	12.0
Co ²⁺ – ABNH	244	474	C ₁₈ H ₁₃ N ₃ O ₂ CoAc3H ₂ O	50.6	4.6	8.8	12.2
				50.3	4.4	8.5	11.9

Table (1): Physical and Analytical data of ABSH, ABNH and their complexes.

Table (2): Infrared characteristic frequency vibrations of ABSH, ABNH and their	•
complexes.	

	ABSH	Cu ²⁺ – ABSH	Ni ²⁺ – ABSH	Co ²⁺ – ABSH	ABNH	Cu ²⁺ – ABNH	Ni ²⁺ – ABNH	Co ²⁺ – ABNH
νOH	3400 w.br.	3422 m.br.	3450 m.br. 3376	3392 s.br	33903m.br	3464 m.br	3400 m.br	3470 m.br
vNH + NH ₂	3060 w.br.	3058 w.br.	3025 w.br	3025 w.br	3050 w.br	3048 w.br	3050 w.br	3040 w.br
amid I (v = 0)	1706 s	1712 vs	1708 vs	1714 m	1710 s	1716 s	1714 vs	1716 s
vC=O (acetate)		1602 vs	1602 vs	1602 vs		1598 s	1598 s	1600 m
δNH	1600 s	1588 vs	1575 sh	1575 sh	1594 s	1578 s	1582 vs	1568 s
vC=O (acetate)		1536 vs	1542 s	1542 vs		1540 vs	1540 vs	1532 s
δΟΗ	1360 m				1350 m			
νCO	1166 s	1152 vs	1152 vs	1152	1172 m	1164 s	1162 s	1164 s
CH ₃ acetate		1330 m	1340 w	1334		1344 m	1344 s	1340 sh
H ₂ O		796 w	800 sh	792		776 w	776 w	770 m
H ₂ O		482 w	516 w	490		526 w	532 w	502 m
vM–О		458 w	545 w	458		498 w	448 m	542 w

HAMDY A. HAMMAD

Table (3a): Colour and electronic spectral data of ABSH and ABNH.

Compound	Colour	Peak position cm ⁻¹	Assignment
ABSH	Light yellow	20,000 & 27,397	
ABNH	Orange	19,607 & 22,222 & 31,250	$n \to \pi^{\ast}$ and $\pi \to \pi^{\ast}$

Table (3b): Colour and electronic spectral data of copper complexes.

Compound	Colour	μ_{eff}	${}^{2}T_{2g} \leftarrow {}^{2}E_{g} \operatorname{cm}^{-1}$
Cu ²⁺ –ABSH	Dark brown	1.89	13,333
Cu ²⁺ –ABNH	Brown	1.87	13,227

Table (3c): Colour, μ_{eff} and electronic spectral data of nickel complexes.

Compound	Colour	$\mu_{eff} BM$	${}^{3}T_{1g} \stackrel{\nu_{2}}{\leftarrow} {}^{2}-{}^{3}A_{2g}$	${}^{3}T_{1g(p)} \xrightarrow{\gamma_{3}} {}^{3}A_{2g}$
Ni ²⁺ –ABSH	Green	3.25	18,867	24,396
Ni ²⁺ –ABNH	Green	3.15	15,384	27,027

Table (3d): Colour, μ_{eff} and electronic spectral data of cobalt complexes.

Compound	Colour	μ_{eff}	${}^{4}T_{2g} \leftarrow {}^{\nu_{2}} - {}^{4}T_{1g}$	${}^4T_{1g(p)} \stackrel{\nu_3}{\leftarrow} {}^4T_{1g}$
Co ²⁺ –ABSH	Brown	4.87	18,348	24,641
Co ²⁺ –ABNH	Reddish	4.62	16,666	23,809
	brown			

References

- 1. M. KATAYL AND Y. DUTT, Talanta, 22, 151, (1975).
- 2. D.W. STEPHEN AND T.A. WARK, Inorg. Chem., 26, 363 (1987).
- B.K. MOHAPATRA, S. GURU AND C.D. RAO, J. Inorg. Nucl. Chem. 42, 1195 (1980).
- 4. M. CEBA, J.J. NEVADA AND A.E. MANSILLA, Talanta 28, 134 (1981).
- 5. K.K. NARANG AND A.A. AGGARWAL, Inorg. Chimica Acta, 9, 137 (1974).
- D.K. RASTOGI, S.K. SAHNI, V.B. RANA AND S.K. DUA, Trans. Met. Chem. 3, 56 (1978).
- D.K. RASTOGI, S.K. SAHNI, V.B. RANA AND S.K. DUA, Indi. J. Chem. 15A, 86 (1978).
- D.K. RASTOGI, S.K. DUA, V.B. RANA AND S.K. SAHNI, J. Inorg. Nucl. Chem. 40, 1323 (1978).

20 2 PHYSICOCHEMICAL STUDIES ON SOME HYDRAZONE 203 9. R.L. DUTTA AND A.K. SARKAR, ibid, 43, 57 (1981).

- 10. AHMED A. SHABANA, KAMEL A. EL-MANAKLY AND HAMDY A. HAMMAD, Canad. J. Appl. Spec. 39, 6, (1994).
- 11. M.A. KHALED, HAMDY A. HAMMAD, ATEF M. ABDALLA, AND KAMEL A. El-Manakhly ibid 40, 71 (1995).
- 12. KAMEL A. EL-MANAKHLY, AHMED A. SHABANA AND H.A. HAMMAD, J. Ind. Chem. Soc. 74, 715 (1997).
- 13. R.A. LAL AND A. KUMAR, Ind. J. Chem. 38A, 839, (1999).
- Arindam Rana, Pupam Dinda, Sktiprosad and Alxenander J. Blake, Polyhderon, 22, 3075, (2003).
- 15. MOHAMMED REZA Ganjalia, Parsia Matloo, Maryam G. Horbani and Massoud Salvati Nissar, Bull Kore. Soc. (2005), 26, 38.
- HAMDY A. HAMMAD AND GAMAL M. EL-SHERBINY, Al-Azhar Bull. Sci., 18, 179, (2007).
- 17. TH. CURTIUS J. Parkt. Chem. 81, 543 (1910), 95, 336 (1917).
- K. NAKAMOTO "Infrared Spectra of Inorganic and Coordination Compounds". Wiely, Intersience, New York, (1970).
- 19. K. NAKAMATO et al., J. Am. Chem. Soc. 79, 4904 (1957).
- R.S. DRAGO "Physical Methods in Inorganic Chemistry". East-West Eddition (1978).
- 21. A.B. LEVER "Inorganic Electronic Spectroscopy". Elsevier, Amesterdam (1968).