[Al-Azhar Bulletin of Science](https://absb.researchcommons.org/journal)

[Volume 18](https://absb.researchcommons.org/journal/vol18) | [Issue 1](https://absb.researchcommons.org/journal/vol18/iss1) Article 13

6-1-2007 Section: Chemistry

INHIBITION EFFECT OF SOME POLYETHYLENE GLYCOLS (PEG) ON THE CORROSION OF ALUMINUM IN 1.0 M PHOSPHORIC ACID

S. SOLIMAN Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt

Follow this and additional works at: [https://absb.researchcommons.org/journal](https://absb.researchcommons.org/journal?utm_source=absb.researchcommons.org%2Fjournal%2Fvol18%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the Life Sciences Commons

How to Cite This Article

SOLIMAN, S. (2007) "INHIBITION EFFECT OF SOME POLYETHYLENE GLYCOLS (PEG) ON THE CORROSION OF ALUMINUM IN 1.0 M PHOSPHORIC ACID," Al-Azhar Bulletin of Science: Vol. 18: Iss. 1, Article 13.

DOI:<https://doi.org/10.21608/absb.2007.11100>

This Original Article is brought to you for free and open access by Al-Azhar Bulletin of Science. It has been accepted for inclusion in Al-Azhar Bulletin of Science by an authorized editor of Al-Azhar Bulletin of Science. For more information, please contact kh_Mekheimer@azhar.edu.eg.

INHIBITION EFFECT OF SOME POLYETHYLENE GLYCOLS (PEG) ON THE CORROSION OF ALUMINUM IN 1.0 M PHOSPHORIC ACID

S. A. SOLIMAN

Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt

Abstract

The effect of some polyethylene glycols (PEG) as inhibitors on the corrosion of aluminum in 1.0 M H3PO⁴ has been studied using weight loss and polarization measurements in various concentrations of PEG and at different temperatures. The dissolution of aluminum in phosphoric acids increases by increasing temperatures and decreases by increasing the additive concentrations. The inhibition efficienciy values proceed according to the following order of the molecular weights of the used inhibitors PEG 4000 > PEG 2000 > PEG 1500 > PEG 400. For relatively higher molecular weights inhibitor (beginning from 1500) the type of adsorption taking place at the surface of aluminum was physical adsorption whereas for the molecular weight. $= 400$ had different behavior till 50° C and then the inhibition efficiency decreasing at 60° C indicating physical adsorptions. The lone pair of electrons of oxygen atom of hydroxyl groups play an important role in the adsorptions of additives on aluminum surface, which affected by polarization. The thermodynamic calculated values of activation and adsorption were calculated and discussed.

Introduction

Corrosion of aluminum and aluminum alloys has been the subject of numerous studies due to the importance of such materials in contemporary civilization and to their greatly industrial applications (1-3). Many researches were devoted to study the corrosion of aluminum in different aqueous solutions $(4-5)$. It is very important to add corrosion inhibitors to decrease the corrosion rate of the dissolution of aluminum in such solutions⁽⁶⁾. The processes of adsorption of inhibitors are influenced by: the nature and surface charge of the metal, the chemical structure of organic inhibitors, the distribution of charges in the molecule and the type of electrolyte^{(7)}. The chemisorptions are the principle type of interaction between organic inhibitors and the metal surface (8) . The adsorption of organic inhibitors mainly depends on some physicochemical properties of the molecule, related to its functional groups, to the possible steric effects and electronic density of donor atoms (9). Recent studies have been concerned with the effect of oxygen-containing compounds such as polyethylene glycol with different molecular weights on the inhibition of aluminum corrosion⁽¹⁰⁾. The general formula of polyethylene glycol is given by "H(-OCH₂– CH_2 -)_nOH ", for PEG 400, average value of n between 8.2 and 9.1, viscous, slightly

10 S. A. SOLIMAN

hygroscopic and liquid, for PEG 1500,average value of n between 29 and 36 , white, free flowing powder, for PEG 2000, average value of n between 42 and 48, white solid and for PEG 4000, average value of n between 68 and 84 and white flakes.

Experimental

The samples were made from commercial aluminum sheets having the following chemical composition: Al 99%, Fe 0.2%, Cu 0.2%, Si 0.2%,Ti 0.03% and Zn 0.08% (Riedel–De Haan–Germany). Phosphoric acid assay 88% Prolabo, Arabic laboratory equipment company. For weight loss measurements, aluminum specimens were polished and cleaned according to the methods described earlier (11-12), the corrosion of aluminum in 1.0 M H₃PO₄ was carried out by using sheets $(1 \times 1.5 \times 0.01 \text{ cm})$, and suspended in 50 ml of the test solutions for a known time at a desired temperatures. All solutions were prepared from ordinary distilled water, thermostated to within \pm 0.1°C of the indicated temperatures. The used of polyethylene glycol (PEG) samples were prepared and delivered from $EPRI^{(13)}$. The electrochemical measurements were carried out using EG & G (Prinston Applied Research) potentiostat / galvanostat Model 372 with scan rate of 1 mV/sec. from -1750 to 1000 mV. An electrolytic cell of Pyrex glass vessel capacity 250 ml consisted of aluminum electrode in the form of sheet as a working electrode. Pt. electrode as an auxiliary electrode and saturated calomel electrode (SCE) as a reference electrode were used. The organic compounds used as inhibitors were polyethylene glycols of different molecular weights (PEG 400 – PEG 1500 – PEG 2000 and PEG 4000).

Results And Discussions

1. *Weight- loss measurements*.

Corrosion behavior of aluminum in 1.0 M H_3PO_4 has been studied intemperatures ranged from ($20^{\circ}C - 60^{\circ}C$). Results given in Fig. (1), concern the corrosion rate determined in the absence of inhibitor. The inhibition efficiency, %EI is defined as follows (14) ;

% EI = $[(W_{\text{non inh}} - W_{\text{inh}}) / W_{\text{non inh}}] \times 100;$ (1) where ; W $_{\text{non inh}}$ and W $_{\text{inh}}$ are weight loss for the metal in the absence and presence of inhibitors respectively.

Fig. (2) shows the effect of addition of different concentrations of polyethylene glycols (PEG 400, PEG 1500, PEG 2000 and PEG 4000), on the dissolution of

aluminum in 1.0 M phosphoric acid solution at 30° C. The curves indicate that an increase in inhibitor concentration decreases the dissolution of aluminum. Its also noticed - from Fig. (3), which reveals the effect of temperatures on the dissolution of aluminum - that the temperature retards the inhibition effect. In general, the inhibition efficiency of these compounds increase with increasing molecular weight. This may be due to the increase in the number of ethylene oxide groups attached in molecule (15) .

The effect of temperatures on the inhibition efficiencies are shown in Fig. (4), which shows that PEG 400 has an abnormal behavior, where the temperature accelerates the inhibition effect till 50° C, then the adsorbed layer destroyed as a result of increasing the desorption process at 60° C, the data are listed in Table (1). To calculate the activation thermodynamic parameters of the corrosion reaction such as the activation energy E_a , the entropy of activation ΔS_a , free energy of activation ΔG_a and the enthalpy of activation ΔH_a , Arrhenius equation (16) was used;

Where K is the specific rate constant and t is the immersion time Log K = log A – (E_a /2.303 RT) (3)

Where, A is Arrhenius constant and R is the universal gas constant.

The values of activation thermodynamic functions were calculated from (17) ,

 $K = (kT/h) \text{Exp}[-\Delta G_a / RT]$ (4)

$$
\Delta H_a = E_a - RT \tag{5}
$$

$$
\Delta S_a = [\Delta H_a - \Delta G_a]/T \tag{6}
$$

where *k* is Boltzmann constant and *h* is Blank' s constant.

From Langmuir adsorption isotherm (18) ;.

$$
\log (\theta/1 - \theta) = \log C\beta - (\Delta G^{\circ}_{ads}/2.303RT),\tag{7}
$$

 $\theta = (W_{\text{non inh}} - W_{\text{inh}}) / W_{\text{non inh}}$

where; β is the adsorption equilibrium constant , C is the inhibitor concentration, and θ is the surface coverage of the metal surface by adsorbate

The values of enthalpy of adsorption can be calculated from the relation (16) ;

$$
\log k = \log k_o - (\Delta H_{ads} / 2.303 \text{ RT}) \tag{8}
$$

where; k is adsorption coefficient. and k_0 is a constant.

The thermodynamic parameter data were summarized in Table (2) which shows that ΔH_a , ΔS_a of the dissolution reactions of aluminum in 1.0 M H₃PO₄ in presence of PEG 1500, PEG 2000, and PEG 4000 are higher as compared with those of the non-inhibited solutions, and the negative values of ΔH_{ads} mean that the adsorption reaction is an exothermic process⁽¹⁹⁾ and the dissolution of aluminum is difficult in

12 S. A. SOLIMAN

presence of PEG additives. The values of ΔG_{ads} presented in Table (2), indicate that the inhibitors are physically adsorbed on the electrode surface (20) . Data of Table (2) obviously show that, for PEGs with high molecular weights (1500, 2000 and 4000 gm mol-1), the inhibition efficiency decreases with increasing temperature, confirming physical adsorption. On the other hand, the inhibition efficiency of low molecular weight PEG (400 gm mol⁻¹), obviously enhanced with rise in temperature. These results may indicate that PEG is chemisorbed on the electrode surface. It is also, polymerization takes place on the electrode surface with rise in temperature and consequently, the inhibition efficiency increases. In addition, the values of ΔS_{ads} decrease with increase in temperature, this meaning that a stable ordered layer of the inhibitor is formed on the aluminum electrode surface (21) .

2*. Polarization Measurements*:

Anodic and cathodic Tafel polarization curves of the dissolution of aluminum in 1.0 M phosphoric acid solution was measured in the absence and presence of 0.01 M of (PEG) additives at temperatures ranged from 30° C to 60° C as shown in Fig. (5). The data clarified that the addition of PEG inhibitor compounds shifts the corrosion potential Ecorr to more negative values, thus the cathodic sits are blocked to greater extent than the anodic sites by the inhibitor molecules except PEG 400 which shifts the corrosion potential to more positive value by increasing the temperatures. It means that this compound affects anodic reaction more than cathodic one. The electrochemical parameters (i $_{corr}$, E_{corr} , b_a b_c and %EI) associated with polarization measurements at different temperatures are listed in Table 3, where i_{corr} , E_{corr} , b_a , b_c and %EI are the corrosion current density, corrosion potential, anodic and cathodic Tafel slopes and inhibition efficiency, respectively. Since the corrosion rate is directly related to the corrosion current density, the inhibition efficiency (% EI) at different temperatures were calculated from the equations:

$$
\theta = 1 - (i_{inh.} / i_{non.} \tag{9}
$$

$$
\% EI = \theta \times 100 \tag{10}
$$

Where, i_{inh} and i_{non inh} are the corrosion current density in presence of inhibitor and in absence of inhibitor, respectively.

And the corrosion rate (mpy) is calculated from the equation (22) ,

Rate (mpy) =
$$
0.1285 \times i_{corr} \times Eq.wt / d,
$$
 (11)

where, d ; is the density and i_{corr} , is the corrosion current density.

The activation and adsorption thermodynamic parameters are calculated by using equations 3, 4 and 5. From polarization measurements, the data are given in Table 4.

It is clear that (ΔH_{ads}) values have a negative signs which mean that an exothermic reaction takes place, except in case of PEG 400 which has a positive values, that indicated an endothermic reaction took place, these behaviors were identical to that obtained from weight loss measurements.

Conclusion

All examined PEG additive compounds act as good inhibitors for aluminum corrosion in 1.0 M phosphoric acid solutions at all temperatures studied. The data indicated that the inhibition efficiencies decrease as the temperatures increasing. However, for PEG 400, the inhibition efficiency increases with increasing temperature. At ambient temperature .the adsorption of such compounds is physical adsorption except for PEG 400 which undergoes chemical adsorption owing to the lowest number of functional groups of small molecular weight then at higher temperatures the adsorption would be physical. The lone pair of electrons of oxygen atoms of hydroxyl groups plays an important role in the adsorption processes of the additives on aluminum surface. The adsorption obeys the Langmuir adsorption isotherm. The data obtained from weight loss measurements agree well with those obtained from polarization measurements. The inhibition efficiencies of these inhibitors decrease in the following order: PEG $4000 > PEG$ 2000 $> PEG$ 1500 $>$ PEG 400.

Comp.	T(K)	W _{noninh} . (mg/cm ²)	$W_{inh.}$ (mg/cm ²)	θ	EI%
PEG	303	14.00	11.73	0.162	16.214
400	313	27.23	20.40	0.254	25.356
	323	55.33	30.73	0.445	44.460
	333	84.07	76.20	0.094	09.400
PEG 1500	303	14.00	07.47	0.466	46.642
	313	27.33	18.60	0.319	31.942
	323	55.33	39.70	0.282	28.248
	333	84.07	75.40	0.103	10.312
PEG 2000	303	14.00	04.87	0.652	65.214
	313	27.33	18.27	0.332	33.158
	323	55.33	34.47	0.377	37.701
	333	84.07	67.67	0.195	19.507
PEG 4000	303	14.00	08.13	0.419	71.427
	313	27.33	17.80	0.349	34.570
	323	55.33	28.53	0.484	48.436
	333	84.07	79.10	0.059	5.9117

Table (1) Values of corrosion rate and inhibition efficiency of 0.01M PEG additives at different temperatures.

14 S. A. SOLIMAN

Inhibitor	T,K	$-E$ corr	I_{corr}	ba	$-bc$	$EI.$ %
		(mV)	(mA/Cm ²)	(mV/dec)	(mV/dec)	
Free	303	950	3.01	700.6	349.9	
	313	970	3.4	1830.9	345.4	
	323	985	3.98	1795.0	335.8	
	333	1000	4.17	1358.0	306.7	
PEG 400	303	890	1.99	1573.3	296.5	33.9
	313	885	1.86	542.6	322.2	45.3
	323	870	1.55	434.5	269.7	61.1
	333	790	0.79	368.5	253.1	81.1
PEG 1500	303	740	0.89	739.8	374.4	70.4
	313	850	1.20	208.1	261.6	64.7
	323	840	1.55	320.5	130.0	59.8
	333	870	1.78	244.3	228.1	57.3
PEG 2000	303	915	0.39	338.7	208.4	87.0
	313	965	1.09	574.2	174.7	68.0
	323	930	1.55	224.1	195.1	61.1
	333	940	2.39	500.9	161.3	42.7
PEG 4000	303	785	0.25	142.2	160.7	91.7
	313	830	0.35	128.3	135.5	89.7
	323	880	1.41	277.1	178.4	64.6
	333	855	1.55	427.4	277.1	62.8

Table (4): The activation and adsorption thermodynamic parameters, calculated from polarization measurements.

Figures

Fig. 1: The effect of time on the dissolution of aluminum in 0.1 M H3PO⁴ at different temperatures.

Fig. 2: The effect of concentrations of PEG additives (a = 400, b = 1500, c = 2000, and d $= 4000$) on the corrosion of aluminum in 0.1 M H₃PO₄ at 30 °C.

Fig. 3: The effect of temperatures on the dissolution of aluminum in 1.0 M H3PO⁴ in presence of 0.01 M PEG additives (a = 400, b = 1500, c = 2000, and d = 4000)

Fig. 4: The effect of temperatures on the inhibition efficiency of PEG additives.

Fig. 5: Polarization curves measured for Al in 1.0 M H3PO⁴ in presence of PEG additives at different temperatures.

References:

- 1. I. L. ROSENFELD, Corrosion Inhibitors, Mac. Graw. Hill, New York ,p.182 (1981).
- 2. Y. A. EL-AWADY AND A. I. AHMED. J. Ind. Chem. 24A, p. 601 (1985).
- 3. G. K. GOMMA AND M. H. WAHDAN. J. Mater. Chem. Phys. 39, p. 209 (1995).
- 4. C. M. BRETT, Corros. Sci. 33 p.203 (1992).
- 5. T. R. BECK, Electrochim. Acta 33 p. 1321 (1988).
- 6. M. ABDALLAH. J, Corros. Sci., 46, p1981- 1996 (2004).
- 7. H. ASHASSI-SORKHABI, B. SHAM, B. ALIGHOLIPOUR, D. SEIFZADEH. J. Applied Surface Science, 252, p4039- 4047 (2006).
- 8. S. L. Granese, Corrosion 44, p 322 (1988).
- 9. M. BOUKLAH, N. BENCHAT, B. HAMMOUTI, A. AOUNITI AND S. KERTIT. J. Materials Letters, 60, p1901-1905 (2006).
- 10. J.D. TALATI, M.N. DESAI AND A.M. TRIVEDI, Werkstoffe und Korros. (Mannheim), 10, 20 (1959).
- 11. J. D. TALATI AND R.M. MODI. Br. Corros. J, 10, 103 (1975).
- 12. F.A.CHAMPION, Corrosion Testing Procedures, London, 191 (1975).
- 13. YONSOK S. RANDY S. AND HYUK. Y. Polymer Engineering and Science. 38 (5). P 741-748 (1988).
- 14. A. AKSUT AND S, BILGIC, Corros. Sci. , 33, p379 (1992).
- 15. E. E. FOAD, EL-SHERBINI, S. M. ABD EL-WAHAB AND M. A. DEYAB, J. Mater. Chem. Phys. 89, p183 (2005).
- 16. I.Z.SELIM, J. Mater, Sci.Technol.,14, p313(1998).
- 17. G.M.PANCHENKOV and LEBEDEV, Chemical Kinetics and Catalysis, Mir Publishers, 147 (1976).
- 18. G.M.DOCRES, R.A.SUTULA, and B.F.LARRICKK, J.Electrochem. Soc., 130, p981 (1983).
- 19. N. M. GUAN, L. XUEMING and L. FEI. Mater. Chem. Phys. 86, p 59 (2004).
- 20. E. GELER and D. S. AZAMBUJA, Corr. Sci. 42, p631 (2000).
- 21. A. YURT, A. BALABAN, S.U. KANDEMIR, G. BEREKET AND B. ERK, Mater. Chem. Phys. 85, p420 (2004).